Silicon

, Volume 6, Issue 1, pp 45–56

A Comparative Study of Anticorrosion Paints Based on Silicone-Urethane Binders: a Multilayer Primer

  • Moussa Tamboura
  • Anna M. Mikhailova
  • Meng Qiu Jia
Original Paper

Abstract

Using zinc phosphate, micaceous iron oxide and their combination in the composition of the undercoat, a series of novel multilayer paint systems based on different silicone-urethane binders with the same R/Si and Ph/R ratio have been formulated. The developed paint systems showed excellent mechanical, adhesion and chemical properties. Scanning Electron Microscopy (SEM) analysis of the surface of the paint systems shows no fractures or holes. The electrochemical impedance spectroscopy (EIS) evaluation of the developed paint systems confirms their excellent protective and anticorrosion properties, especially for Silicone-Urethane-Urea (SPUU) based paint systems with a combination of pigments in the composition of the undercoat. SPUU-based paint systems show low water uptake. The new multilayer silicone-urethane-based paint systems can be used as a anticorrosion primer.

Keywords

Hybrid inorganic/organic polymer Anticorrosion paint Multilayer paint 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sobolevsky MV (1985) Oligoorganosiloxanes: properties, obtaining and applications. Khimiya Moscow (in Russian)Google Scholar
  2. 2.
    Chou TP, Chandrasekeran C, Limmer SJ, Seraji S, Wu Y, Forbeu MJ, Nguyen C, Cao GZ (2001) Organic–inorganic hybrids coatings for corrosion protection. J Non-Cryst Solids 290:153–162CrossRefGoogle Scholar
  3. 3.
    Jiang H, Zheng Z, Song W, Wang X (2008) Moisture-cured polyurethane/polysiloxane copolymers: effect of the structure of polyester diol and NCO/OH ratio. J Appl Polym Sci 108(6):3644–3651. doi:10.1002/app.27343 CrossRefGoogle Scholar
  4. 4.
    Hill DJT, Killeen MI, O’Donnell JH, Pomery JP, John DS, Whittaker AK (1996) Development of wear-resistant thermoplastic polyurethanes by blending with Poly(dimethyl siloxane). I. Physical properties. J Appl Polym Sci 61(10):1757–1766. doi:10.1002/(SICI)1097-4628(19960906)61:10<1757::AID-APP16>3.0.CO;2-# CrossRefGoogle Scholar
  5. 5.
    Witucki GL (2003) The evolution of silicon-based technology in coating. Dow Corning Corporation 26:1202–1208Google Scholar
  6. 6.
    O’Reilly JM, Coltrain BK (1996) Organic/inorganic composites materials. In: Polymeric materials encyclopedia, vol 6. CRC Press, LondonGoogle Scholar
  7. 7.
    Philipp G, Schmidt H (1986) The reactivity of TiO2 and ZrO2 in organically modified silicates. J Non-Cryst Solids 82:31–36. doi:10.1016/0022-3093(86)90107-9 CrossRefGoogle Scholar
  8. 8.
    Lucas PL, Robin JJ (2007) Silicone-based polymer blends: an overview of materials and processes. Adv Polym Sci 209:111–147. doi:10.1007/12_2007_115 Google Scholar
  9. 9.
    Bremner T, Hill DJT, Killeen MI, O’Donnell JH, Pomery PJ, John DSt, Whittaker AK (1997) Development of wear-resistant thermoplastic polyurethanes by blending with Poly (dimethyl siloxane). II. A packing model. J Appl Polym Sci 65(5):939–950. doi:10.1002/(SICI)1097-4628(19970801)65:5<939::AID-APP12>3.0.CO;2-N CrossRefGoogle Scholar
  10. 10.
    Jia M, Wu C, Li W, Gao D (2009) Synthesis and characterization of silicon resin with silphenylene units in Si-O-Si backbones. J Appl Polym Sci 114(2):971–977. doi:10.1002/app.30635 CrossRefGoogle Scholar
  11. 11.
    Mikhailova AM, Tamboura M, Jia MQ (2012) Heat-resistant and anti-corrosion urethane-silicone-based coatings. Silicon 4(3):197–208. doi:10.1007/s12633-012-9123-1 CrossRefGoogle Scholar
  12. 12.
    Noell JLW, Wilkes GL, Mohanty DK, McGrath JE (1990) The preparation and characterization of new polyether ketone-tetraethylorthosilicate hybrid glasses by the sol–gel method. J Appl Polym Sci 40(7–8):1177–1194. doi:10.1002/app.1990.070400709 CrossRefGoogle Scholar
  13. 13.
    Wilkes GL, Orler B, Huang H (1985) Ceramers: hybrid materials incorporating polymeric/oligomeric species into inorganic glasses utilizing a sol–gel approach. Polym Preparation 26(2):300–301Google Scholar
  14. 14.
    Risch BG, Rodrigues DE, Lyon K, McGrath JE, Wilkes GL (1996) Structure–property behaviour of poly(ether ether ketone)-polydimethylsiloxane block copolymers and their ketamine precursors. Polymer 37(7):1229–1242. doi:10.1016/0032-3861(96)80850-0 CrossRefGoogle Scholar
  15. 15.
    Tyagi D, Yilgör I, McGrath JE, Wilkes GL (1884) Segmented organosiloxane copolymers: 2 thermal and mechanical properties of siloxane-urea copolymers. Polymer 25(12):1807–1816. doi:10.1016/0032-3861(84)90255-6 CrossRefGoogle Scholar
  16. 16.
    Yilgör I, Sha’aban AK, Steckle Jr WP, Tyagi D, Wilkes GL, McGrath JE (1984) Segmented organosiloxane copolymers. 1. Synthesis of siloxane-urea copolymers. Polymer 25(12):1800–1806. doi:10.1016/0032-3861(84)90254-4 CrossRefGoogle Scholar
  17. 17.
    Summers JD, Elsbernd CS, Sormani PM, Brandt PJA, Arnold CA, Yilgor I, Riffle JS, Kilic S, McGrath JE (1988) Recent advances in organosiloxane copolymers. In: Zeldin M, Wynne, K (eds) Inorganic and organometallic polymers. ACS Symposium Series, p 180Google Scholar
  18. 18.
    Yilgör I, McGrath JE (1988) Polysiloxane containing copolymers: a survey of recent developments. Adv Polym Sci 86:1–86CrossRefGoogle Scholar
  19. 19.
    Elsbernd CS, Spinu M, Krukonis VJ, Gallagher PM, Mohanty DK, McGrath JE (1990) Synthesis and fractionation studies of functionalized organosiloxanes. In: Ziegler JM, Gordon Fearon FW (eds) Silicon-based polymer science: a comprehensive resource. Advances in Chemistry Series, pp 145–164Google Scholar
  20. 20.
    Yu X, Nagarajan MR, Grasel TG, Gibson P, Cooper SL (1985) Poly-dimethylsiloxane-polyurethane elastomers: synthesis and properties of segmented copolymers and related zwitterionomers. J Polym Sci Polym Phys Ed 23(11):2319–2338. doi:10.1002/pol.1985.180231106 CrossRefGoogle Scholar
  21. 21.
    Li C, Yu X, Speckhard T, Cooper S (1988) Synthesis and properties of polycyanoethylmethylsiloxane polyurea urethane elastomers: a study of segmental compatibility. J Polym Sci Polym Phys Ed 26(2):315–337. doi:10.1002/polb.1988.090260209 CrossRefGoogle Scholar
  22. 22.
    Yilgör I, Eynur T, Bilgin S, Yilgör E, Wilkes GL (2011) Influence of soft segment molecular weight on the mechanical hystheresis and set behavior of silicone-urea copolymers with low hard segment content. Polymer 52(2):266–274. doi:10.1016/j.polymer.2010.11.040 CrossRefGoogle Scholar
  23. 23.
    Kazama H, Ono T, Tezuka T, Imai K (1989) Synthesis of polyurethane-polysiloxane graft polymer using uniform-size poly(dimethylsiloxane) with a diol end group. Polymer 30(3):553–557. doi:10.1016/0032-3861(89)90030-X CrossRefGoogle Scholar
  24. 24.
    Choi T, Weksler J, Padsalgikar A, Runt J (2009) Influence of soft segment composition on phase sparated microstructure of polydimethylsiloxane-based segmented polyurethane copolymers. Polymer 50(7):2320–2327. doi:10.1016/j.polymer.2009.03.024 CrossRefGoogle Scholar
  25. 25.
    Wu S, Soucek MD (1998) Effects of siloxane functionalized ε-caprolactone polyols on photocurable epoxy coatings. J Coat Tech 70(887):53–62. doi:10.1007/BF02700543 CrossRefGoogle Scholar
  26. 26.
    Ballard RL, Tuman SJ, Fouquette DJ, Stegmiller W, Soucek MD (1999) Effects of an acid catalyst on the inorganic domain of inorganic-organic hybrid materials. Chem Mater 11:726–735. doi:10.1021/cm980606a CrossRefGoogle Scholar
  27. 27.
    Wu S, Sears MT, Soucek MD (1999) Siloxane modified cycloaliphatic epoxide UV coatings. Prog Org Coat 36(1–2):89–101. doi:10.1016/S0300-9440(99)00020-X CrossRefGoogle Scholar
  28. 28.
    Ni H, Aaserud DJ, Simonsick Jr WJ, Soucek MD (2000) Preparation and characterization of alkoxysilane functionalized isocyanurates. Polymer 41(1):57–71. doi:10.1016/S0032-3861(99)00160-3 CrossRefGoogle Scholar
  29. 29.
    Ni H, Skaja AD, Sailer RA, Soucek MD (2000) Moisture-curing alkoxysilane functionalized isocyanate coatings. Macromol Chem Phys 201(6):722–732. doi:10.1002/(SICI)1521-3935(20000301)201:6<722::AID-MACP722>3.0.CO;2-D CrossRefGoogle Scholar
  30. 30.
    Ni H, Simonsick Jr WJ, Skaja AD, Williams JP, Soucek MD (2000) Polyurea/polysiloxane ceramer coatings. Prog Org Coat 88(2):97–110. doi:10.1016/S0300-9440(00)00079-5 CrossRefGoogle Scholar
  31. 31.
    Ni H, Johnson AH, Soucek MD, Grant JT, Vreugdenhil AJ (2002) Polyurethane/polysiloxane ceramer coatings: evaluation of corrosion protect. Macromol Mater Eng 287(7):470–479. doi:10.1002/1439-2054(20020701)287:7<470::aid-mame470>3.0.co;2-d CrossRefGoogle Scholar
  32. 32.
    Dworak DP, Soucek MD (2004) Synthesis of cycloaliphatic substituted silane monomers and polysiloxanes for photocuring. Macromolecules 37(25):9402–9417. doi:10.1021/ma048998w CrossRefGoogle Scholar
  33. 33.
    Kahraman MV, Kugu M, Menceloglu Y, Kayaman-Apohan N, Gungor A (2006) The novel use of organo alkoxy silane for the synthesis of organic–inorganic hybrid coatings. J Non-Cryst Solids 352:2143–2151. doi:10.1016/j.jnoncrysol.2006.02.029 CrossRefGoogle Scholar
  34. 34.
    Phillip G, Schmidt H (1984) New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol–gel process. J Non-Cryst Solids 63(1–2):283–292. doi:10.1016/0022-3093(84)90407-1 CrossRefGoogle Scholar
  35. 35.
    Chiang CL, Ma CCM (2002) Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method. Eur Polym J38 (11):2219–2224. doi:10.1016/S0014-3057(02)00123-4 CrossRefGoogle Scholar
  36. 36.
    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San DiegoGoogle Scholar
  37. 37.
    Pierre AC (1998) Introduction to sol–gel processing. Kluwer, BostonCrossRefGoogle Scholar
  38. 38.
    Drinberg AS, Ytsko EF, Kalinskaya TV (2006) Anti-corrosion primers. Niproins LKM, Saint-Petersburg (in Russian)Google Scholar
  39. 39.
    Sorensen PA, Kiil S, Dam-Johansen K, Weinel CE (2009) Anticorrosive coatings: a review. J Coat Technol Res 6(2):135–176. doi:10.1007/s11998-008-9144-2 CrossRefGoogle Scholar
  40. 40.
    Mikhailova AM, Tamboura M, Jia MQ (2013) Synthesis, characterization, and analyses of mechanical, adhesion, and thermal properties of polysiloxane resin modified with segmented polyurethane. J Coat Technol Res 10(1):97–108. doi:10.1007/s11998-012-9424-8 CrossRefGoogle Scholar
  41. 41.
    Kalendova A, Vesely D, Kalenda P (2007) Anticorrosion pigment based on calcium titanate with a perovskite structure. Pigment Resin Technol 36(3):123–133. doi:10.1108/03699420710748983 CrossRefGoogle Scholar
  42. 42.
    Kalendova A, Vesely D, Kalenda P (2006) A study of the effects of pigments and fillers on the properties of anticorrosive paints. Pigment Resin Technol 35(2):83–94. doi:10.1108/03699420610652377 CrossRefGoogle Scholar
  43. 43.
    Grundmeier G, Rossenbeck B, Roschmann KJ, Ebbinghaus P, Stratmann M (2005) Corrosion protection of Zn-phosphate containing water borne dispersion coatings: part 2: investigations of the corrosive de-adhesion of model latex coatings on iron. Corros Sci 48(11):3716–3730. doi:10.1016/j.corsci.2006.01.007 CrossRefGoogle Scholar
  44. 44.
    Yang LH, Liu FC, Han EH (2005) Effects of P/B on the properties of anticorrosive coatings with different particle size. Prog Org Coat 53(2):91–98. doi:10.1016/j.porgcoat.2005.01.003 CrossRefGoogle Scholar
  45. 45.
    Popa MV, Drob P, Vasilescu E, Mirza-Rosca JC, Santana-Lopez A, Vasilescu C, Drob SI (2006) The pigment influence on the anticorrosive performance of some alkyd films. Mater Chem Phys 100(2–3):296–303. doi:10.1016/j.matchemphys.2006.01.002 CrossRefGoogle Scholar
  46. 46.
    Veselý D, Kalendová A, Nìmec P (2010) Properties of organic coatings depending on chemical composition and structure of pigment particles. Surf Coat Tech 204:2032–2037. doi:10.1016/j.surfcoat.2009.11.005 CrossRefGoogle Scholar
  47. 47.
    Armelin E, Olivek R, Lesa F, Iribarren JI, Strany F, Alemán C (2007) Marine paint fomulations: conducting polymers as anticorrosive additives. Prog Org Coat 59(1):46–52. doi:10.1016/j.porgcoat.2007.01.013 CrossRefGoogle Scholar
  48. 48.
    Allahar KN, Hinderliter BR, Bierwagen GP, Galoman DE, Croll SG (2008) Cyclic wet drying of an epoxy coating using an ionic liquid. Prog Org Coat 62(1):87–95. doi:10.1016/j.porgcoat.2007.09.018 CrossRefGoogle Scholar
  49. 49.
    Singh SK, Tambe SP, Raja VS, Kumar D (2007) Thermally sprayable polyethylene coatings for marine environment. Prog Org Coat 60(3):186–193. doi:10.1016/j.porgcoat.2007.07.028 CrossRefGoogle Scholar
  50. 50.
    Kalendova A (2002) Comparison of the efficiency of anticorrosive pigments based on phosphates. Pigment Resin Technol 31(6):381–388. doi:10.1108/03699420210449070 CrossRefGoogle Scholar
  51. 51.
    Kalenda P, Kalendova A (1995) Improved chemical resistance of epoxy resin-based coating compositions. Dyes Pigments 27(4):305–312. doi:10.1016/0143-7208(94)00070-I CrossRefGoogle Scholar
  52. 52.
    Tambe SP, Singh SK, Patri M, Dhirendra K (2011) Effect of pigmentation on mechanical and anticorrosive properties of thermally sprayable EVA and EVAl coatings. Prog Org Coat 72(3):315–320. doi:10.1016/j.porgcoat.2011.05.002 CrossRefGoogle Scholar
  53. 53.
    Dhoke SK, Bhandari R, Khana AS (2009) Effect of nano-ZnO addition on the silicone-modified alkyd-based waterborne coatings on its mechanical and heat-resistance properties. Prog Org Coat 64:39–46. doi:10.1016/j.porgcoat.2008.07.007 CrossRefGoogle Scholar
  54. 54.
    Forsgren A (2006) Corrosion control through organic coatings. Taylor & Francis Group, New YorkCrossRefGoogle Scholar
  55. 55.
    Romagnoli R, Vetere VF (1995) Non-pollutant corrosion inhibitive pigments: zinc-phosphate: a review. Corros Rev 13(1):45–64. doi:10.1515/CORRREV.1995.13.1.45 Google Scholar
  56. 56.
    Leidheiser HJ (1981) Mechanism of corrosion inhibition with special attention to inhibitors in organic coatings. J Coat Technol 53(678):29–30Google Scholar
  57. 57.
    Tesfamichael T, Vargas WE, Wackelgard E, Niklasson GA (1997) Optical properties of silicon pigmented alumina films. J Appl Phys 82(7):3508–3513. doi:10.1063/1.365668 CrossRefGoogle Scholar
  58. 58.
    Di Virgilio AL, Reigosa M, Arnal PM, Fernández Lorenzo de Mele M (2010) Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J Hazard Mater 177(1–3):711–718. doi:10.1016/j.jhazmat.2009.12.089 CrossRefGoogle Scholar
  59. 59.
    Liang H, Ueno A, Shinohara K (2000) UV protection effectiveness of plastic particles coated with titanium dioxide by rotational impact blending. Chem Eng Res Des 78(1):49–54. doi:10.1205/026387600527068 CrossRefGoogle Scholar
  60. 60.
    Maisch R, Stahlecker O, Kieser M (1996) Mica pigments in solvent free coatings systems. Prog Org Coat 27(1–4):145–152. doi:10.1016/0300-9440(95)00530-7 CrossRefGoogle Scholar
  61. 61.
    Hao Y, Liu F, Shi H, Han E, Wang Z (2011) The influence of ultra-fine glass fibers on the mechanical and anticorrosion properties of epoxy coatings. Prog Org Coat 71(2):188–197. doi:10.1016/j.porgcoat.2011.02.012 CrossRefGoogle Scholar
  62. 62.
    Gao SL, Mäder E, Plonka R (2007) Nanostructured coatings of glassfibers: improvement of alkali resistance and mechanical properties. Acta Mater 55(3):1043–1052. doi:10.1016/j.actamat.2006.09.020 CrossRefGoogle Scholar
  63. 63.
    Flores-Garcia JC, Leal-Cruz AL, Pech-Canul MI (2009) Synthesis and characterization of Si/Si2N2O/Si3N4 composites from solid-gas precursor system via CVD. In: Processing and properties of advanced ceramics and composites. New JerseyGoogle Scholar
  64. 64.
    Muller B, Poth U (2006) Coating formulation: an international textbook. Hannover, GermanyGoogle Scholar
  65. 65.
    Sun ZH, Cai JP, Liu M, Lu F, Zhang N (2010) Electrochemical impedance study of zinc yellow polypropylene-coated aluminum alloy. Int J Corros 2010:1–6. doi:10.1155/2010/528573 CrossRefGoogle Scholar
  66. 66.
    Sonke J, Bos WM (2008) Scientific methods for qualification and selection of protective coatings. J Protect Coat LiningsGoogle Scholar
  67. 67.
    Chang BY, Park SU (2003) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3:207–229. doi:10.1146/annurev.anchem.012809.102211 CrossRefGoogle Scholar
  68. 68.
    Feliu S, Barajas R, Bastidas JM, Morcillo M (1989) Mechanism of cathodic protection of zinc-rich paints by electrochemical impedance spectroscopy. I. Galvanic stage [J]. J Coat Technol 61(775):63–69Google Scholar
  69. 69.
    Cavalcanti E, Ferraz O, DiSarli AR (1993) The use of electrochemical impedance measurements to assess the performance of organic coating systems on naval steel. Prog Org Coat 23(2):185–200. doi:10.1016/0033-0655(93)80010-8 CrossRefGoogle Scholar
  70. 70.
    Abreua CM, Izquierdoa M, Keddam M, Nóvoa XR, Takenouti H (1996) Electrochemical behaviour of zinc-rich epoxy paints in 3 % NaCl solution. Electrochim Acta 41(15):2405–2415. doi:10.1016/0013-4686(96)00021-7 CrossRefGoogle Scholar
  71. 71.
    Mansfeld F, Kendig MW (1985) Electrochemical impedance test of protective coatings. In: Haynes C, Baboian R (eds) Laboratory corrosion tests and standards. ASTM Publication STP 866, Philadelphia, pp 122–142Google Scholar
  72. 72.
    Armas RA, Gervasi CA, Di Sarli A, Real SG, Vilche JR (1992) Zinc-rich paints on steels in artificial seawater by electrochemical impedance spectroscopy. Corros 48(5):379–383. doi:10.5006/1.3315948 CrossRefGoogle Scholar
  73. 73.
    O’Donoghe M, Garrett R, Datta V, Roberts P, Abens T (2003) Electrochemical impedance spectroscopy: testing coating for rapid immersion service. Coatings & Linings, HoustonGoogle Scholar
  74. 74.
    Loveday D, Peterson P, Rodgers B (2005) Evaluation of organic coatings with electrochemical impedance spectroscopy. Part 1, 2 and 3. JCT coatings techGoogle Scholar
  75. 75.
    Jorcin JB, Orazen ME, Pébère N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51:1473–1479. doi:10.1016/j.electacta.2005.02.128 CrossRefGoogle Scholar
  76. 76.
    Tsai CH, Mansfeld F (1993) Determination of coating deterioration with, EIS: part II. Development of a method for field testing of protective coatings. Corros 49(9):726–737. doi:10.5006/1.3316106 CrossRefGoogle Scholar
  77. 77.
    Amirudin A, Thierry D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymercoated metals. Prog Org Coat 26(1):1–28. doi:10.1016/0300-9440(95)00581-1 CrossRefGoogle Scholar
  78. 78.
    Asbeck WK, Van Loo M (1949) Critical pigment-volume relationships. Ind Eng Chem 41:1470–1475CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Moussa Tamboura
    • 1
  • Anna M. Mikhailova
    • 1
  • Meng Qiu Jia
    • 2
  1. 1.DER de Chimie, Faculté des Sciences et TechniquesUniversité des Sciences, des Techniques et des Technologies de BamakoMaliBamako
  2. 2.State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Beijing City on the Preparation and Processing of Novel Polymer MaterialsBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations