, Volume 4, Issue 4, pp 259–266 | Cite as

Manufacture of Mesoporous Silicon from Living Plants and Agricultural Waste: An Environmentally Friendly and Scalable Process

  • L. Batchelor
  • A. Loni
  • L. T. CanhamEmail author
  • M. Hasan
  • J. L. Coffer
Original Paper


We demonstrate a process for realising mesoporous silicon from a range of land-based plants such as common grasses, bamboos, sugarcane and rice. Such plants act as “natural factories”, converting and concentrating vast quantities of soluble silicon in soil into nanostructured forms of silica in their roots, stems, branches or leaves. This porous biogenic silica is chemically extracted and then thermally reduced to porous silicon using magnesium vapor. Importantly, for larger batch size, an inexpensive thermal moderator such as salt, is added for control of the reaction exotherm and minimization of sintering. Mesoporous silicon of >350 m2/g with 8 nm wide pores has been obtained from a bamboo extract, for example. The same process is applicable to a wide range of “silicon accumulator plants”. The purity of this “naturally derived” porous silicon is likely to be raised to a level acceptable for a wide range of high volume applications outside of electronics and solar cell technology.


Silicon Mesoporous Biodegradable Sustainable Plants Agricultural waste products 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jugdaohsingh R (2007) J Nutr Health Aging 11(2):99–110Google Scholar
  2. 2.
    Canham LT (1997) Nanotechnology 18:185704CrossRefGoogle Scholar
  3. 3.
    Canham LT (2006) PCT Patent WO 2006/111761. PCT Patent WO 2010/058218Google Scholar
  4. 4.
    Sailor MJ (2012) Porous silicon in practice. Wiley VCHGoogle Scholar
  5. 5.
    Loni A, Barwick D, Batchelor L, Tunbridge J, Han Y, Li ZY, Canham LT (2011) Electrochem Solid-State Lett 14(5):K25–K27CrossRefGoogle Scholar
  6. 6.
    Struyf E, Smis A, Van Damme S, Meire P, Conley DJ (2009) Silicon 1:207–213CrossRefGoogle Scholar
  7. 7.
    Datnoff LE, Synder CH, Korndorfer GH (eds) (2001) Silicon in agriculture. ElsevierGoogle Scholar
  8. 8.
    Epstein E (2009) Ann Appl Biol 155:155–160CrossRefGoogle Scholar
  9. 9.
    Banerjee HD, Sen S, Acharya HN (1982) Mater Sci Eng 52:173–179CrossRefGoogle Scholar
  10. 10.
    Sun L, Gong K (2001) Ind Eng Chem Res 40:5861–5877CrossRefGoogle Scholar
  11. 11.
    Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW, Summers CJ, Liu M, Sandhage H (2007) Nature 446. doi: 10.1038/nature05570
  12. 12.
    Zhu J, Wu J, Wang Y, Meng C (2010) J Mater Sci. doi: 10.1007/s10853-010-4773-0 Google Scholar
  13. 13.
    Guo M, Zou X, Ren H, Muhammad F, Huang C, Qiu S, Zhu G (2011) Micro Meso Mater 142:194–201CrossRefGoogle Scholar
  14. 14.
    Larbi KK (2010) M. Appl. Sci. Thesis, Univ. Toronto, CanadaGoogle Scholar
  15. 15.
    Sing KSW, Everett DH, Haul R, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1982) Pure Appl Chem 54(11):2201–2218CrossRefGoogle Scholar
  16. 16.
    Sun Y, Lin L, Deng H, Li J, He B, Sun R, Ouyang P (2008) BioResources 3(2):297–315Google Scholar
  17. 17.
    Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Biotech Fuels 3:10Google Scholar
  18. 18.
    Canham LT (1995) Adv Mater 7:1033–1037. PCT Patent WO 97/06101, 1999Google Scholar
  19. 19.
    Hong C, Lee J, Zheng H, Hong SS, Lee C (2011) Nanoscale Res Lett 6:321CrossRefGoogle Scholar
  20. 20.
    Park JH, Gui L, Malzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Nat Mater 8:331–336CrossRefGoogle Scholar
  21. 21.
    Tasciotti E, Godin B, Martinez JO, Chiappini C, Bhavane R, Liu XW, Ferrari M (2011) Mol Imaging 10(1):56–58Google Scholar
  22. 22.
    Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2007) J Pharm Sci 97:632–653CrossRefGoogle Scholar
  23. 23.
    Cheng L, Anglin E, Cunin F, Kim D, Sailor MJ, Falkenstein I, Tammewar A, Freeman WR (2008) Br J Ophthalmol 92(5):705–711CrossRefGoogle Scholar
  24. 24.
    Coffer JL, Whitehead MA, Nagesha DK, Mukherjee P, Akkaraju G, Totolici M, Saffie R, Canham LT (2005) Phys Status Solidi (a) 202(8):1451–1455CrossRefGoogle Scholar
  25. 25.
    Whitehead MA, Fan D, Mukherjee P, Akkaraju GR, Canham LT, Coffer JL (2008) Tissue Eng Part A 14(1):195–206CrossRefGoogle Scholar
  26. 26.
    Fan D, Akkaraju GR, Couch EF, Canham LT, Coffer JL (2010) Nanoscale 3:354–361CrossRefGoogle Scholar
  27. 27.
    Hodson MJ, Evans DE (1995) J Exp Bot 46:161–171CrossRefGoogle Scholar
  28. 28.
    Won CW, Nersisyan HH, Won HI (2011) Sol Energy Mater Sol Cells 95(2):745–750CrossRefGoogle Scholar
  29. 29.
    Li Z, Peng L, He J, Yang Z, Lin Y (2006) J Zhejiang Univ Sci B 7(11):849–857CrossRefGoogle Scholar
  30. 30.
    Holzhuter G, Narayanan K, Gerber T (2003) Anal Bioanal Chem 376:512–517CrossRefGoogle Scholar
  31. 31.
    Matichenkov VV, Calvert DV (2002) J Am Soc Sugarcane Techn 22:21–30Google Scholar
  32. 32.
    Motomura H, Mita N, Suzuki M (2002) Ann Bot 90:149–152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • L. Batchelor
    • 1
  • A. Loni
    • 1
  • L. T. Canham
    • 1
    Email author
  • M. Hasan
    • 2
  • J. L. Coffer
    • 2
  1. 1.pSiMedica Ltd, Malvern Hills Science ParkMalvernUK
  2. 2.Department of ChemistryTexas Christian UniversityFort WorthUSA

Personalised recommendations