, Volume 4, Issue 3, pp 197–208 | Cite as

Heat-Resistant and Anti-Corrosion Urethane-Silicone-based Coatings

  • Anna M. Mikhailova
  • Moussa Tamboura
  • Meng Qiu Jia
Original Paper


Novel silicone-based coating materials were prepared by the copolymerization of alkoxysilanes with pre-synthesized tailored polyurethane/polyurea copolymer end-capped with siloxane. The structure of the pre-synthesized copolymer and that of the obtained silicone-polyurethane/polyurea copolymer (SPPU) with different hard segment (HS) contents were analyzed by an FT-IR spectroscopic method. The molecular weight and molecular weight distribution of the SPUU was determined by Gel Permeation Chromatography (GPC). The thermal properties of the SPUU copolymers were performed by Thermogravimetric Analysis (TGA). The mechanical and adhesion properties of the copolymers were also investigated by standard methods. Their morphology was studied by Scanning Electron Microscopy (SEM). The electrochemical impedance spectroscopy (EIS) evaluation shows that the protective and anticorrosion properties of these coating materials do not strictly depend on the hard HS content.


Coatings Anticorrosive Polysiloxanes Polyurethanes Block copolymer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leidheiser HJ (1987). In: Dekker M (ed) Corrosion Mechanisms. New York, p 165Google Scholar
  2. 2.
    Barton K (1976) Protection against atmospheric corrosion. New YorkGoogle Scholar
  3. 3.
    Hua Z, Chen ZL, Nan F, Lin A, Gan FX (2008) Preparation of epoxy modified organosilicone high-temperature resistance coatings. Key Eng Mat 373–374:437–437. doi:10.4028/–374.434 Google Scholar
  4. 4.
    Mathivanan L, Radhakrishna S (1997) Heat-resistant anticorrosive paint from epoxy-silicone vehicules. Anti-Corros Method M 44(6):400–406. doi:10.1108/00035599710185476 CrossRefGoogle Scholar
  5. 5.
    Jia M, Wu C, Li W, Gao D (2009) Synthesis and characterization of silicon resin with silphenylene units in Si-O-Si backbones. J Appl Polym Sci 114(2):971–977. doi:10.1002/app.30635 CrossRefGoogle Scholar
  6. 6.
    Lucas PL, Robin JJ (2007) Silicone-based polymer blends: an overview of materials and processes. In: Adv. Polym. Sci., vol 209. Springer, Berlin. doi:10.1007/12_2007_115 Google Scholar
  7. 7.
    Smith TL (1978) Strength of elastomers. A perspective. Rubber Chem Technol 51:225. doi:10.5254/1.3545831 CrossRefGoogle Scholar
  8. 8.
    Yilgor I, McGrath JE (1988) Polysiloxane containing copolymers: a survey of recent developments. Adv Polym Sci 86:1–86. doi:10.1007/BFb0025274 CrossRefGoogle Scholar
  9. 9.
    Molotova VA (1978) Industrial applications of silicone coatings. MoscowGoogle Scholar
  10. 10.
    Mazurek MH (2007) Silicones. In: Comprehensive organometallic chemistry, vol III. Elsiever Ltd, pp 551–607Google Scholar
  11. 11.
    Witucki GL (2003) The evolution of silicon-based technology in coating. Dow Corning CorporationGoogle Scholar
  12. 12.
    Leir CM, Galkiewicz RK, Kantner SS, Mazurek M (2010) Telechelic siloxanes with hydrogen-bonded polymerizable end groups. I. Liquid rubbers and elastomers. J Appl Polym Sci 117(2):756–656. doi:10.1002/app.31757 CrossRefGoogle Scholar
  13. 13.
    Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. Shawbury, UKGoogle Scholar
  14. 14.
    Ma M, Hill RM, Lowery JL, Fridrickh SV, Rutledge GC (2005) Electrospun Poly(Styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21(12):5549–5554. doi:10.1021/la047064y CrossRefGoogle Scholar
  15. 15.
    Holohan AT, George MH, Barrie JA, Parker DG (1994) Polyhydroxyether-polydimethylsiloxane graft copolymers: 2. Properties and morphology. Polymer 35:977–982. doi:10.1016/0032-3861(94)90941-5 CrossRefGoogle Scholar
  16. 16.
    Furukawa H, Shirahata A (1994) Polyamide resin composition. EP Patent 581.224,Google Scholar
  17. 17.
    Wagner M, Wolf BA (1993) Effect of block copolymer on the interfacial tension between two ‘immiscible’ homopolymers. Polymer 34(7):1460–1464. doi:10.1016/0032-3861(93)90862-5 CrossRefGoogle Scholar
  18. 18.
    Khandpur AK, Guegan P, Macosko CW Compatibilizers for A/B blends: A-C-B triblock versus A-B diblock copolymers. In: SPE Regional technical conference on polymer alloys and blends., Quebec, Boucherville, Oct 19–20 (1995). Polyblends’95, pp 88–96Google Scholar
  19. 19.
    Fleischer CA, Morales AR, Koberstein JT (1994) Interfacial modification through end group complexation in polymer blends. Macromolecules 27(2):379–385. doi:10.1021/ma00080a010 CrossRefGoogle Scholar
  20. 20.
    Hamurcu EE, Baysal, BM (1993) Interpenetrating polymer networks of poly(dimethylsiloxane): 1. Preparation and characterization. Polymer 34(24):5163–5167. doi:10.1016/0032-3861(93)90264-B CrossRefGoogle Scholar
  21. 21.
    Turner J, Cheng YL (2001) Process for preparing interpenetrating polymer networks of controlled morphology. U.S. Patent 6.331.578,Google Scholar
  22. 22.
    Ebdon JR, Hourston DJ, Klein PG (1984) Polyurethane-polysiloxane interpenetrating polymer networks. A polyether urethane-poly (dimethylsiloxane) system. Polymer 25(11):1079–1085. doi10.1016/0032–3861(84)90159–9 CrossRefGoogle Scholar
  23. 23.
    Zhou P, Xu Q, Frisch HL (1994) Kinetics of simultaneous interpenetrating polymer networks of poly (dimethylsiloxane-urethane) poly (methyl methacrylate) formation and studies of their phase morphology. Macromolecules 27(4):938–946. doi:10.1021/ma00082a009 CrossRefGoogle Scholar
  24. 24.
    Fujiki M, Furuta D, Naito M (2004) Manifacture of semi-IPN (interpenetrating polymer network) composite and the composite made of crosslinkable siloxane and radically polymerized polymer. JP Patent 2004263062,Google Scholar
  25. 25.
    Gilmer TC, Hall PK, Ehrenfeld H, Wilson K, Bivens T, Clay D, Endresz C (1996) Synthesis, characterization and mechanical properties of PMMA/poly(aromatic/aliphatic siloxane) semi-interpenetrating polymer network. J Polym Sci 34(6):1025–1077. doi:10.1002/(SICI)1099–0518(19960430)34:6<1025::AID-POLA12>3.0.CO;2–9 Google Scholar
  26. 26.
    Yu X, Nagarajan MR, Grasel TG, Gibson P, Cooper SL (1985) Poly- dimethylsiloxane-polyurethane elastomers: synthesis and properties of segmented copolymers and related zwitterionomers. J Polym Sc: Polym Phys Ed 23(11):2319–2338. doi:10.1002/pol.1985.180231106 CrossRefGoogle Scholar
  27. 27.
    Li C, Yu X, Speckhard T, Cooper S (1988) Synthesis and properties of polycyanoethylmethylsiloxane polyurea urethane elastomers: A study of segmental compatibility. J Polym Sci Polym Phys Ed 26:315–337. doi:10.1002/polb.1988.090260209 CrossRefGoogle Scholar
  28. 28.
    Yilgor I, Eynur T, Bilgin S, Ylgor E, Wilkes GL (2011) Influence of soft segment molecular weight on the mechanical hystheresis and set behavior of silicone-urea copolymers with low hard segment content. Polymer 52(2):266–274. doi:10.1016/j.polymer.2010.11.040 CrossRefGoogle Scholar
  29. 29.
    Shibayama M, Inoue M, Yamamoto T, Nomura S (1990) Structure and orientational behaviour of polyurethane containing polydimethylsiloxane. Polymer 31(4):749–757. doi:10.1016/0032-3861(90)90299-E CrossRefGoogle Scholar
  30. 30.
    Kazama H, Ono T, Tezuka T, Imai K (1989) Synthesis of polyurethane-polysiloxane graft polymer using uniform-size poly(dimethylsiloxane) with a diol end group. Polymer 30(3):553–557. doi:10.1016/0032-3861(89)90030-X CrossRefGoogle Scholar
  31. 31.
    Choi T, Weksler J, Padsalgikar A, Runt J (2009) Influence of soft segment composition on phase sparated microstructure of polydimethylsiloxane-based segmented polyurethane copolymers. Polymer 50(7):2320–2327. doi:10.1016/j.polymer.2009.03.024 CrossRefGoogle Scholar
  32. 32.
    Xiaodong S et al (2008) Concurrent physical aging and degradation of crosslinked coating system accelerated weathering. J Coat Technol Res 5(3):299–309. doi:10.1007/s11998-008-9081-0 CrossRefGoogle Scholar
  33. 33.
    Sobolevsky MV (1985) Oligoorganosiloxanes: properties, obtaining and applications. MoscowGoogle Scholar
  34. 34.
    Joshi VP (2009) Studies on synthesis & characterization of thermoplastic polyurethane-urea copolymers. Dissertation, University of Pune, Pune, IndiaGoogle Scholar
  35. 35.
    Sun Z-H, Cai J-P, Liu M, Lu F, Zhang N (2010) electrochemical impedance study of zinc yellow polypropylene-coated aluminum alloy. Int J Corros 2010. doi:10.1155/2010/528573 Google Scholar
  36. 36.
    Sonke J, Bos WM (2008) Scientific methods for qualification and selection of protective coatings. J Protect Coat & LiningsGoogle Scholar
  37. 37.
    Amirudin A, Thierry D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Swedish Corrosion Institute.Google Scholar
  38. 38.
    Krol P (2008) Linear polyurethanes: synthesis methods, chemical structures, properties and applications. Leiden-BostonGoogle Scholar
  39. 39.
    Tarutina LI, Pozdnyakova FO (1986) Spectral analysis of polymers. LeningradGoogle Scholar
  40. 40.
    Mistry BD (2009) A handbook of spectroscopic data—chemistry (UV, IR, PRM, 13CNMR and Mass Spectroscopy). Jaipur, IndiaGoogle Scholar
  41. 41.
    Oprea S, Oprea V (2010) Influence of crosslinkers on properties of new polyurethane elastomers. Mater Plast 47:54–58Google Scholar
  42. 42.
    Huang S-L, Lai J-Y (1997) Structure-tensile properties of polyurethanes. Eur Polym J 33(10–12):1563–1567. doi:10.1016/S0014-3057(97)00058-X CrossRefGoogle Scholar
  43. 43.
    Belenky BG, Vilenchik LZ (1978) Chromatography of polymers. MoscowGoogle Scholar
  44. 44.
    Korshak VV (1969) Thermal resistant polymers. MoscowGoogle Scholar
  45. 45.
    De PP, Roy NC, Dutta NK (2010) Thermal analysis of rubbers and ruberry materials. ShawburyGoogle Scholar
  46. 46.
    Pielichowski K, Njuguna J (2005) Thermal degradation of polymer materials. ShawburyGoogle Scholar
  47. 47.
    Pielichowski K, Janowski B (2005) Semi-inter penetrating Polymer Networks of Polyurethane and Poly(vinyl Chloride). Thermal Stability Assessment. J Therm Anal Calorim 80:147–151. doi:10.1007/s10973-005-0627-4 CrossRefGoogle Scholar
  48. 48.
    Fu-Sheng C, Hung-Yi T et al (2008) Thermal degradation of Poly (siloxane-urethane) copolymers. Polym Degrad Stab 93:1753–17761. doi:10.1016/j.polymdegradstab.2008.07.029 CrossRefGoogle Scholar
  49. 49.
    Nguyen D, Chambon P, Rosselgong J, Cloutet E, Gramail H, Ravaine S (2008) Simple route to get very hydrophobic surfaces of fibrous materials with core-shell latex particles. J Appl Polym Sci 108(5):2772–2777. doi:10.1002/app.27594 CrossRefGoogle Scholar
  50. 50.
    Hillmyer MA, Lodge TP (2002) Synthesis and self-assembly of fluorinated block copolymers. J Polym Sci 40(1):1–8. doi:10.1002/pola.10074 Google Scholar
  51. 51.
    Jenekhe SA, Chen XL (1999) Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 283:372–375. doi:10.1126/science.283.5400.372 CrossRefGoogle Scholar
  52. 52.
    Olsen BD, Segalman RA (2008) Self-assembly of rod-coil block copolymers. Mat Sci Eng R 62(2):37–66. doi:10.1016/j.mser.2008.04.001 CrossRefGoogle Scholar
  53. 53.
    Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29:635–698. doi:10.1016/j.progpolymsci.2004.03.001 CrossRefGoogle Scholar
  54. 54.
    Joki-Korpela F, Pakkaren TT (2011) Incorporation of polydimethylsiloxane into polyurethanes and characterization of copolymers. Eur Polym J 47:1694–1708. doi:10.1016/j.eurpolymj.2011.06.006 CrossRefGoogle Scholar
  55. 55.
    O’Donoghe M, Garrett R, Datta V, Roberts P, Abens T (2003) electrochemical impedance spectroscopy: testing coating for rapid immersion service. Coatings & Linings, Houston, TexasGoogle Scholar
  56. 56.
    Loveday D, Peterson P et al (2005) Evaluation of organic coatings with electrochemical impedance spectroscopy. Part 1, 2 and 3. JCT coatings tech.Google Scholar
  57. 57.
    Jorcin JB, Orazen ME, Pébère N, Tribollet B (2005) CPE analysis by local electrochemical impedance spectroscopy.Google Scholar
  58. 58.
    Tsai CH, Mansfeld F (1993) Determination of coating deterioration with EIS: part II. Development of a method for field testing of protective coatings. Corros 49(9):726–737. doi:10.5006/1.3316106 CrossRefGoogle Scholar
  59. 59.
    Leidheiser H (1979) Electrical and electrochemical measurements as predictors of corrosion at the metal-organic coating interface. Prog Org Coat 7:79–104. doi:10.1016/0300-9440(79)80038-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Anna M. Mikhailova
    • 1
  • Moussa Tamboura
    • 1
  • Meng Qiu Jia
    • 1
  1. 1.State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer MaterialBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations