Advertisement

Silicon

, Volume 3, Issue 4, pp 163–171 | Cite as

Electrochemical Detection of Copper Using a Gly-Gly-His Modified Carbon Nanotube Biosensor

  • Benjamin S. Flavel
  • Monessha Nambiar
  • Joseph G. Shapter
Original Paper

Abstract

Diazonium ion chemistry has been used to electrochemically graft aminophenyl layers onto p-type silicon (100) substrates. A condensation reaction was used to immobilise single-walled carbon nanotubes with high carboxylic acid functionality directly to this layer. The surface immobilised carbon nanotubes were then modified with the tripeptide Gly-Gly-His for the selective detection of copper ions in aqueous environments. The stepwise assembly and sensitivity of this biosensor to copper was characterised by X-ray photoelectron spectroscopy and differential pulse voltammetry, respectively. The ability to detect copper ion concentrations down to 1 μM was demonstrated. As this biosensor combines the advantages of a silicon substrate for easy integration into sophisticated electrical and electronic devices, diazonium salt derived films for stability in aqueous environments and carbon nanotubes for desirable electrochemical properties, it is expected to have important future applications in environmental sensing.

Keywords

Silicon p-phenylenediamine Peptide Electrochemical grafting Heavy metal sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flavel BS, Garrett DJ, Lehr J, Shapter JG, Downard AJ (2010) Electrochim Acta 55:3995–4001CrossRefGoogle Scholar
  2. 2.
    Malcik N, Oktar O, Ozser ME, Caglar P, Bushby L, Vaughan A, Kuswandi B, Narayanaswamy R (1998) Sens Actuators B 53:211–221CrossRefGoogle Scholar
  3. 3.
    Chow E, Wong ELS, Böcking T, Nguyen QT, Hibbert DB, Gooding JJ (2005) Sens Actuators B 111–112:540–548CrossRefGoogle Scholar
  4. 4.
    NHMRC and Agriculture and Resource Management Council of Australia and New Zealand, Australian Water Drinking Guidelines (1996) Inorganic Chemicals: Copper, Fact Sheet No. 49Google Scholar
  5. 5.
    NHMRC and Agriculture and Resource Management Council of Australia and New Zealand, Australian Water Drinking Guidelines (1996) Inorganic Chemicals: Cadmium, Fact Sheet No. 44.Google Scholar
  6. 6.
    Chow E, Hibbert DB, Gooding JJ (2005) Electrochem Commun 7:101–106CrossRefGoogle Scholar
  7. 7.
    Bannon DI, Chisolm JJ (2001) Clin Chem 47:1703–1704Google Scholar
  8. 8.
    Liu HW, Jiang SJ, Liu SH (1999) Spectrochim Acta B 54:1367–1375CrossRefGoogle Scholar
  9. 9.
    Eksperiandova LP, Blank AB, Makarovskaya YN (2002) X-ray Spectrom 31:259–263CrossRefGoogle Scholar
  10. 10.
    Foranzi ES, Zhang H, Chen W, Tao N (2005) Environ Sci Technol 39:1257–1262CrossRefGoogle Scholar
  11. 11.
    Liu G, Nguyen QT, Chow E, Böcking T, Hibbert DB, Gooding JJ (2006) Electroanalysis 18:1141–1151CrossRefGoogle Scholar
  12. 12.
    Yang W, Gooding JJ, Hibbert DB (2001) Analyst 126:1573–1577CrossRefGoogle Scholar
  13. 13.
    Yang W, Chow E, Willet GD, Hibbert DB, Gooding JJ (2003) Analyst 128:712–718CrossRefGoogle Scholar
  14. 14.
    Lin M, Cho MS, Choe WS, Lee Y (2009) Biosens Bioelectron 25:28–33CrossRefGoogle Scholar
  15. 15.
    White BR, Holcombe JA (2007) Talanta 71:2015–2020CrossRefGoogle Scholar
  16. 16.
    Chow E, Hibbert DB, Gooding JJ (2005) Analyst 130:831–837CrossRefGoogle Scholar
  17. 17.
    Delamarche E, Michel B, Kang H, Gerber Ch (1994) Langmuir 10:4103–4108CrossRefGoogle Scholar
  18. 18.
    Horn AB, Russell DA, Shorthouse LJ, Simpson TRE (1996) J Chem Soc Faraday Trans 92:4759–4762CrossRefGoogle Scholar
  19. 19.
    Schoenfisch MH, Pemberton JE (1998) J Am Chem Soc 120:4502–4513CrossRefGoogle Scholar
  20. 20.
    Yu J, Shapter JG, Quinton JS, Johnston MR, Beattie DA (2007) Phys Chem Chem Phys 9:510–520CrossRefGoogle Scholar
  21. 21.
    Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Saveant J–M (1997) J Am Chem Soc 119:201–207CrossRefGoogle Scholar
  22. 22.
    Garrett DJ, Flavel BS, Shapter JG, Baronian KHR, Downard AJ (2010) Langmuir 26:1848–1854CrossRefGoogle Scholar
  23. 23.
    Flavel BS, Yu J, Shapter JG, Quinton JS (2008) Electrochim Acta 53:5653–5659CrossRefGoogle Scholar
  24. 24.
    Flavel BS, Yu J, Shapter JG, Quinton JS (2007) J Mater Chem 17:4757–4761CrossRefGoogle Scholar
  25. 25.
    Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G (2003) Anal Chem 75:5413–5421CrossRefGoogle Scholar
  26. 26.
    Stetter JR, Maclay GJ (2008) Adv Micro Nanosys 357.Google Scholar
  27. 27.
    Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929–938CrossRefGoogle Scholar
  28. 28.
    Zhou Y, Yang H, Chen H-Y (2008) Talanta 76:419–423CrossRefGoogle Scholar
  29. 29.
    Wang J (2005) Electroanalysis 17:7–14CrossRefGoogle Scholar
  30. 30.
    Liu L, Zhang F, Xi F, Lin X (2008) Biosens Bioelectron 24:306–312CrossRefGoogle Scholar
  31. 31.
    Ly SY (2008) Talanta 74:1635–1641CrossRefGoogle Scholar
  32. 32.
    Zhou H, Yang W, Sun C (2008) Talanta 77:366–371CrossRefGoogle Scholar
  33. 33.
    Tu W, Lei J, Ju H (2009) J Euro Chem A 15:779–784CrossRefGoogle Scholar
  34. 34.
    Upadhyayula VKK, Ghoshroy S, Nair VS, Smith GB, Mitchell MC, Deng S (2008) Res Lett Nanotech 156358Google Scholar
  35. 35.
    Valentini F, Biagiotti V, Lete C, Palleschi G, Wang J (2007) Sens Actuators B 128:326–333CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Kang T-F, Wan Y-W, Chen SY (2009) Microchim Acta 165:307–311CrossRefGoogle Scholar
  37. 37.
    Flavel BS, Yu J, Shapter JG, Quinton JS (2007) Carbon 45:2551–2558CrossRefGoogle Scholar
  38. 38.
    Gooding JJ, Wibowo R, Lie J, Yang W, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) J Am Chem Soc 125:9006–9007CrossRefGoogle Scholar
  39. 39.
    Nan X, Gu Z, Liu Z (2002) J Colloid Interface Sci 245:311–318CrossRefGoogle Scholar
  40. 40.
    Allongue P, Henry de Villeneuve C, Pinson J, Ozanam F, Chazalviel JN, Wallart X (1998) Electrochim Acta 43:2791–2798CrossRefGoogle Scholar
  41. 41.
    Aswal DK, Koiry SP, Jousselme B, Gupta SK, Palacin S, Yakhmi JV (2009) Phys E 41:325–344CrossRefGoogle Scholar
  42. 42.
    Lyskawa J, Belanger D (2006) Chem Mater 18:4755–4763CrossRefGoogle Scholar
  43. 43.
    Brooksby PA, Downard AJ (2004) Langmuir 20:5038–5045CrossRefGoogle Scholar
  44. 44.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD, Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer Corporation.Google Scholar
  45. 45.
    Yu J, Losic D, Marshall M, Böcking T, Gooding JJ, Shapter JG (2006) Soft Matter 2:1081–1088CrossRefGoogle Scholar
  46. 46.
    Kariuki JK, McDermott MT (2001) Langmuir 17:5947–5951CrossRefGoogle Scholar
  47. 47.
    Binner J, Zhang Y (2001) J Mater Sci Lett 20:123–126CrossRefGoogle Scholar
  48. 48.
    Bi X, Yang K-L (2007) Langmuir 23:11067–11073CrossRefGoogle Scholar
  49. 49.
    Nishizawa M, Sunagawa T, Yoneyama H (1997) Langmuir 13:5215–5217CrossRefGoogle Scholar
  50. 50.
    Yang W, Jaramillo D, Gooding JJ, Hibbert DB, Zhang R, Willet GD, Fisher KJ (2001) Chem Commun 1982–1983.Google Scholar
  51. 51.
    Hernadi K, Siska A, Thien-Nga L, Forro L, Kiricsi I (2001) Solid State Ionics 141–142:203–209CrossRefGoogle Scholar
  52. 52.
    Yu J, Matthew S, Flavel BS, Johnston MR, Shapter JG (2008) J Am Chem Soc 130:8788–8796CrossRefGoogle Scholar
  53. 53.
    Tune DD, Flavel BS, Quinton JS, Ellis AV, Shapter JG (2010) Sol Mat 94:1665–1672CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Chemical and Physical SciencesFlinders UniversityAdelaideSouth Australia

Personalised recommendations