Advertisement

Silicon

, Volume 2, Issue 1, pp 33–39 | Cite as

Synthesis of Enzyme and Quantum Dot in Silica by Combining Continuous Flow and Bioinspired Routes

  • Siddharth V. Patwardhan
  • Carole C. Perry
Original Paper

Abstract

In this contribution, we demonstrate the potential of combining bioinspired synthesis and continuous flow processing to generate functional materials with possible applications in catalysis, biocatalysis and photonic devices. Specifically, we have prepared invertase immobilized on silica while preserving its enzymatic activity. Furthermore, we present routes to synthesize silica and gold colloid composite materials (Au@SiO2) and demonstrate that the colloids retain their optical activity.

Keywords

Biomimetic Flow chemistry Enzymes Green chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

We thank the University of Strathclyde for Faculty of Engineering Scholarship, Research Support Fund and the US AFOSR (grant code FA9500-06-1-0154) for financial support. We also thank Dr. D. Belton, Dr. A. Rai, and Dr. A. Prabhune (National Chemical Laboratory, Pune) for their help in the flow apparatus set-up, experiments with Au NPs and invertase assay respectively.

Supporting Information Available

SEM of materials produced using PEHA at short residence time; EDXA and TGA data for invertase-silica composites.

Supplementary material

12633_2010_9038_MOESM1_ESM.pdf (176 kb)
Esm 1 (PDF 176 kb)

References

  1. 1.
    de Mello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402CrossRefGoogle Scholar
  2. 2.
    Song Y, Hormes J, Kumar CSSR (2008) Microfluidic synthesis of nanomaterials. Small 4:698–711CrossRefGoogle Scholar
  3. 3.
    Jahn A, Reiner JE, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M (2008) Preparation of nanoparticles by continuous flow microfluidics. J Nanopart Res 10:925–934CrossRefGoogle Scholar
  4. 4.
    Kawase M, Miura K (2007) Fine particle synthesis by continuous precipitation usinf a tubular reactor. Adv Powder Technol 18:725–738CrossRefGoogle Scholar
  5. 5.
    Edel JB, Fortt R, de Mello JC, de Mello AJ (2002) Microfluidic routes to the controlled production of nanoparticles. Chem Commun 10:1136–1137CrossRefGoogle Scholar
  6. 6.
    Nakamura H, Yamaguchi Y, Miyazaki M, Maeda H, Uehara M, Mulvaney P (2002) Preparation of CdSe nanocrystals in a micro-flow-reactor. Chem Commun 23:2844–2845CrossRefGoogle Scholar
  7. 7.
    Khan SA, Jensen KF (2007) Microfluidic synthesis of titania shells on colloidal silica. Adv Mater 19:2556–2560CrossRefGoogle Scholar
  8. 8.
    Ju JX, Zeng CF, Zhang LX, Xu NP (2006) Continuous synthesis of zeolite NaA in a microchannel reactor. Chem Eng J 116:115–121CrossRefGoogle Scholar
  9. 9.
    Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics. Angew Chem Int Ed 44:724–728CrossRefGoogle Scholar
  10. 10.
    Boleininger J, Kurz A, Reuss V, Sönnichsen C (2006) Microfluidic continuous flow synthesis of rod-shaped gold and silver nanocrystals. Phys Chem Chem Phys 8:3824–3827CrossRefGoogle Scholar
  11. 11.
    Patwardhan SV, Clarson SJ, Perry CC (2005) On the role(s) of additives in bioinspired silicification. Chem Commun 9:1113–1121CrossRefGoogle Scholar
  12. 12.
    Meldrum FC, Cölfen H (2008) Controlling mineral morphologies and structures in biological and synthetic systems. Chem Rev 108:4332–4432CrossRefGoogle Scholar
  13. 13.
    Brutchey RL, Morse DE (2008) Silicatein and the translation of its molecular mechanism of biosilicification into low temperature nanomaterial synthesis. Chem Rev 108:4915–4934CrossRefGoogle Scholar
  14. 14.
    Dickerson MB, Sandhage KH, Naik RR (2008) Protein–and peptide-directed syntheses of inorganic materials. Chem Rev 108:4935–4978CrossRefGoogle Scholar
  15. 15.
    Belton DJ, Patwardhan SV, Annenkov VV, Danilovtseva EN, Perry CC (2008) From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonation of polyamines. Proc Natl Acad Sci USA 105:5963–5968CrossRefGoogle Scholar
  16. 16.
    (2000). New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry, A report by Council for Chemical Research.Google Scholar
  17. 17.
    El Rassy H, Maury S, Buisson P, Pierre AC (2004) Hydrophobic silica aerogel-lipase biocatalysts: Possible interactions between the enzyme and the gel. Journal of Non-Crystalline Solids 350:23CrossRefGoogle Scholar
  18. 18.
    Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026CrossRefGoogle Scholar
  19. 19.
    Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Tech 40:1451–1463CrossRefGoogle Scholar
  20. 20.
    Barbe C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G (2004) Silica particles: A novel drug-delivery system. Adv Mater 16:1959–1966CrossRefGoogle Scholar
  21. 21.
    Gill I, Ballesteros A (1998) Encapsulation of Biologicals within Silicate, Siloxane, and Hybrid Sol–Gel Polymers: An Efficient and Generic Approach. J Am Chem Soc 120:8587CrossRefGoogle Scholar
  22. 22.
    Gill I, Ballesteros A (2000) Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals. Trends Biotechnol 18:282–296CrossRefGoogle Scholar
  23. 23.
    Livage J, Coradin T, Roux C (2001) Encapsulation of biomolecules in silica gels. J Phys Condens Matter 13:R673–R691CrossRefGoogle Scholar
  24. 24.
    Betancor L, Lucarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572CrossRefGoogle Scholar
  25. 25.
    Szymanska K, Bryjak J, Mrowiec-Bialon J, Jarzebski AB (2007) Application and properties of siliceous mesostructured cellular foams as enzymes carriers to obtain efficient biocatalysts. Microporous Mesoporous Mater 99:167–175CrossRefGoogle Scholar
  26. 26.
    Lebert JM, Forsberg EM, Brennan JD (2008) Solid-phase assays for small molecule screening using sol-gel entrapped proteins. Biochem Cell Biol 86:100–110CrossRefGoogle Scholar
  27. 27.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 281:2013Google Scholar
  28. 28.
    Chan WCW, Nie SM (1998) Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 281:2016CrossRefGoogle Scholar
  29. 29.
    Mulvaney P, Liz-Marzán LM, Giersig M, Ung T (2000) Silica encapsulation of quantum dots and metal clusters. J Mater Chem 10:1259–1270CrossRefGoogle Scholar
  30. 30.
    Nann T, Mulvaney P (2004) Single Quantum Dots in Spherical Silica Particles. Angew Chem Int Ed 43:5393CrossRefGoogle Scholar
  31. 31.
    Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872CrossRefGoogle Scholar
  32. 32.
    Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. J Catalysis 240:222–234CrossRefGoogle Scholar
  33. 33.
    Qian K, Huang W, Fang J, Lv S, He B, Jiang Z, Wei S (2008) Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts: Some mechanism insights. J Catalysis 225:269–278CrossRefGoogle Scholar
  34. 34.
    Wang L-C, Liu Y-M, Chen M, Cao Y, He H-Y, Fan K-N (2008) MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. J Phys Chem C 112:6981–6987CrossRefGoogle Scholar
  35. 35.
    Belton D, Patwardhan SV, Perry CC (2005) Spermine, spermidine and their analogues generate tailored silicas. J Mater Chem 15:4629–4638CrossRefGoogle Scholar
  36. 36.
    Phadtare S, D’Britto V, Pundle A, Prabhune A, Sastry M (2004) Invertase-lipid biocomposite films: Preparation, characterization, and enzymatic activity. Biotechnol Progr 20:156–161CrossRefGoogle Scholar
  37. 37.
    Khan SA, Gunther A, Schmidt MA, Jensen KF (2004) Microfluidic synthesis of colloidal silica. Langmuir 20:8604–8611CrossRefGoogle Scholar
  38. 38.
    Belton D, Patwardhan SV, Perry CC (2005) Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect. Chem Commun 27:3475–3477CrossRefGoogle Scholar
  39. 39.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62CrossRefGoogle Scholar
  40. 40.
    Patwardhan SV, Mukherjee N, Clarson SJ (2001) Formation of fiber-like amorphous silica structures by externally applied shear. J Inorg Organomet Polymer 11:117–121CrossRefGoogle Scholar
  41. 41.
    Clarson SJ, Steinitz-Kannan M, Patwardhan SV, Kannan R, Hartig R, Schloesser L, Hamilton DW, Fusaro JKA, Beltz R (2009) Some observations of diatoms under turbulence. SILICON 1:79–90CrossRefGoogle Scholar

Copyright information

© Springer Science & Business Media BV 2010

Authors and Affiliations

  1. 1.Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgowUK
  2. 2.School of Science and TechnologyNottingham Trent UniversityNottinghamUK

Personalised recommendations