, Volume 2, Issue 1, pp 41–47 | Cite as

FTIR Spectral Analysis of Corrosion Mechanisms in Soda Lime Silica Glasses Doped with Transition Metal Oxides

  • F. H. El-Batal
  • E. M. Khalil
  • Y. M. Hamdy
  • H. M. Zidan
  • M. S. Aziz
  • A. M. Abdelghany
Original Paper


Hydrolysis kinetics of soda lime silicate glass (SLS) with 75 mol% SiO2 in different pH solutions was investigated. Fourier Transform Infrared (FTIR) spectroscopy was used to monitor and confirm the proposed corrosion mechanisms on the surfaces of prepared undoped (SLS) glass together with samples doped with one of the first 3d-transition metal oxides (TMO) (TiO2→CuO) when exposed to an aqueous solution for a short time period. The traditional proposed mechanism of silicate glass corrosion through ion exchange is analyzed in correlation with infrared reflectance vibrational spectra to confirm the suggested mechanism. The effects of transition metal oxides are followed and interpreted.


Soda lime silica glass Transition metal Corrosion FTIR spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holland L (1994) The properties of glass surfaces, 2nd edn. Reinhold, New YorkGoogle Scholar
  2. 2.
    Morey GW (1954) The properties of glass. Rainbold publishing, New YorkGoogle Scholar
  3. 3.
    Paul A (1990) Chemistry of glasses, 2nd edn. Chapman & Hall, New YorkGoogle Scholar
  4. 4.
    Zhang Y, Stolper EM, Wasserburg GJ (1991) Geochim Cosmo Acta 55:441CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Stolper EM, Ihinger PD (1995) Am Mineral 80:593Google Scholar
  6. 6.
    Grambow B (1992) In: Clark DE, Zoitos BK (eds) Corrosion of glass, ceramics and ceramic superconductors. Noyes Publications, Park Ridge, p 125Google Scholar
  7. 7.
    Doremus RH (1994) Glass science, 2nd edn. Wiley, New YorkGoogle Scholar
  8. 8.
    Mitchell JW, Devries RC, Roberts RW, Cannon P (eds) (1969) Reactivity of solids. Wiley, New York, p 667Google Scholar
  9. 9.
    Doremus RH (1995) J Mater Res 10:2379CrossRefGoogle Scholar
  10. 10.
    Bunker BC (1994) J Non-Cryst Solids 179:300CrossRefGoogle Scholar
  11. 11.
    Newton RG (1985) Glass Technol 26(1):21Google Scholar
  12. 12.
    Khedr AA, El-Batal HA (1996) J Am Ceram Soc 79:733CrossRefGoogle Scholar
  13. 13.
    Azooz MA, El-Batal HA, ElBadry KHM, Abd ElMoneim M, ElAshry SM (2006) Glass Techn: Eur J Glass Sci Technol Part A 47:164Google Scholar
  14. 14.
    Wong J, Angell CA (1976) Glass structure by spectroscopy. Marcel Dekker, New YorkGoogle Scholar
  15. 15.
    Robinet L, Eremin K, Coupry C, Hall C, Lacome N (2007) J Non Cryst Solids 353(16–17):1546CrossRefGoogle Scholar
  16. 16.
    Dilmore MF, Clark DE, Hench LL (1978) J Am Ceram Soc 61:439CrossRefGoogle Scholar
  17. 17.
    Isard JO, Priestly D (1985) Phys Chem Glasses 26:221Google Scholar
  18. 18.
    Vilarigues M, Da Silva RC (2009) J Non Cryst Solids 355:1630CrossRefGoogle Scholar
  19. 19.
    Rahimi RA, Raisali G, Sadrnezhaad SK, Alipour A (2009) J Nucl Mater 385(3):527CrossRefGoogle Scholar
  20. 20.
    Doremus RH (1983) J Non Cryst Solids 55:143CrossRefGoogle Scholar
  21. 21.
    Husung RD, Doremus RH (1990) J Mater Res 5(10):2209CrossRefGoogle Scholar
  22. 22.
    Tomozawa H, Tomozawa M (1989) J Non Cryst Solids 109:311CrossRefGoogle Scholar
  23. 23.
    Dunken H, Doremus RH (1987) J Non Cryst Solids 92:61CrossRefGoogle Scholar
  24. 24.
    Hench LL (1975) Non Cryst Solids 19:27CrossRefGoogle Scholar
  25. 25.
    Rahimi RA, Sadrnezhaad SK, Raisali G (2009) J Non Cryst Sol 355(3):169CrossRefGoogle Scholar
  26. 26.
    Tournié A, Ricciardi P, Colomban Ph (2008) Solid State Ionics 179(38):2142CrossRefGoogle Scholar
  27. 27.
    Cailleteau C, Weigel C, Ledieu A, Barboux P, Devreux F (2008) J Non Cryst Solids 354(2–9):117CrossRefGoogle Scholar
  28. 28.
    Matthew EL, Diane CF, David EC (2007) J Non Cryst Solids 353(17):2667Google Scholar
  29. 29.
    Abo-Naf SM, El-Batal FH, Azooz MA (2003) Mater Chem Phys 77:846CrossRefGoogle Scholar
  30. 30.
    Khalil EMA, El-Batal FH, Hamdy YM, Zidan HM, Aziz MS, Abdelghany MA (2010) Physica B: Condensed Matter 405:1294CrossRefGoogle Scholar
  31. 31.
    Khalil EMA, Abdelghany MA, Ghoneim ME (2010) 2nd International Conference on Advanced Materials and their applications and its workshop on New Trends in Nano-science and laser Physics, Physics Division, NRC, EGYPTGoogle Scholar

Copyright information

© Springer Science & Business Media BV 2010

Authors and Affiliations

  • F. H. El-Batal
    • 1
  • E. M. Khalil
    • 2
  • Y. M. Hamdy
    • 2
  • H. M. Zidan
    • 3
  • M. S. Aziz
    • 3
  • A. M. Abdelghany
    • 2
  1. 1.Glass Research DepartmentNational Research CentreCairoEgypt
  2. 2.Spectroscopy DepartmentNational Research CentreCairoEgypt
  3. 3.Physics Department, Faculty of Science DamittaMansoura UniversityDamittaEgypt

Personalised recommendations