, Volume 2, Issue 2, pp 95–104 | Cite as

UV-Absorption and Silica/Titania Colloids Using a Core–Shell Approach

  • Liang Zhou
  • Hendrik Heinz
  • Mark D. Soucek
  • Elvin A. Alemán
  • David A. Modarelli
Original Paper


Metal-oxo-colloids have been prepared using tetraethoxysilane (TEOS) oligomers with titanium tetra-i-propoxide (TIP) or titanium (di-i-propoxide) bis(acetylacetonate) (TIA) precursors. Transmission electron microscopy (TEM), FTIR, UV-Vis, and photoluminescence spectroscopy were used to investigate the composition, the size, and optical properties of the Si/Ti core–shell colloids. The presence of hetero-bonded silicate structure (Si–O–Ti) was indicated by FTIR spectroscopy. The size of Si/TIP system ranged from 55 to 120 nm and Si/TIA system ranged from 220 to 250 nm. The TEM data indicated that the size of colloids can be controlled by the TIP or TIA content. The Si/Ti system exhibited strong absorption in the UV-range, yet had excellent optical transmittance in the visible range. The Si/Ti systems exhibited a photoluminescence emission at 329 nm.


Silica Colliod Sol–Gel Photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ni H, Skaja AD, Sailer RA, Soucek MD (2000) Macromol Chem Phys 201:722CrossRefGoogle Scholar
  2. 2.
    Soucek MD, Ni H (2002) J Coat Technol 74:125CrossRefGoogle Scholar
  3. 3.
    He J, Nebioglu A, Zong Z, Soucek MD, Wollyung KM, Wesdemiotis C (2005) Macromol Chem Phys 205:732CrossRefGoogle Scholar
  4. 4.
    Deffar D, Teng G, Soucek MD (2001) Macromol Mater Eng 286:204CrossRefGoogle Scholar
  5. 5.
    Xiong MH, Zhou SX, You B, Gu GG, Wu LM (2004) J Polym Sci Part B Polym Phys 42:3682CrossRefGoogle Scholar
  6. 6.
    Teng G, Soucek MD (2003) Macromol Mater Eng 288:844CrossRefGoogle Scholar
  7. 7.
    Holmes Farley SD, Yanyo LC (1991) J Adhes Sci Technol 5:131CrossRefGoogle Scholar
  8. 8.
    Frings S, Meinema HA, Van Nostrum CF, Vander-Linde R (1998) Prog Org Coat 33:126CrossRefGoogle Scholar
  9. 9.
    Messadeq SH, Pulcinelli SH, Santilli CV, Guastaldi AC, Messadeq Y (1999) J Non-Cryst Solids 247:164CrossRefGoogle Scholar
  10. 10.
    Liu Y, Ren W, Zhang L, Yao X (1999) Thin Solid Films 353:124CrossRefGoogle Scholar
  11. 11.
    Zong Z, Soucek MD (2003) J Polym Sci: Part A: Polym Chem 41:3440CrossRefGoogle Scholar
  12. 12.
    Chen J, Soucek MD (2003) Euro Polym J 39:505CrossRefGoogle Scholar
  13. 13.
    Sailer RA, Soucek MD (1998) Prog Org Coat 33:36CrossRefGoogle Scholar
  14. 14.
    Deffar D, Soucek MD (2001) J Coat Technol 73:95CrossRefGoogle Scholar
  15. 15.
    Ni H, Johnson AH, Soucek MD, Grant JT, Vreugdenhil AJ (2002) Macromol Mater Eng 287:470CrossRefGoogle Scholar
  16. 16.
    Matsuda A, Kotani Y, Kogure T, Tatsumisago M, Minami T (2000) J Am Ceram Soc 83:229CrossRefGoogle Scholar
  17. 17.
    Kim HM, Miyaji F, Kokubo T, Nakamura T (1996) J Biomed Mater Res 32:406Google Scholar
  18. 18.
    Cassgneau T, Fendler JH, Johnson S, Mallouk TE (2000) Adv Mat 12:1363CrossRefGoogle Scholar
  19. 19.
    Lin J, Siddiqui JA, Ottenbrite RM (2001) Polym Adv Technol 12:285CrossRefGoogle Scholar
  20. 20.
    Gebeyehu D, Brabec CJ, Sariciftci NS, Vangeneugden D, Kiebooms R, Vanderzande D, Kienberger F, Schindler H (2002) Synth Met 125:279CrossRefGoogle Scholar
  21. 21.
    Spiekermann S, Smestad G, Kowalik J, Tolbert LM, Gratzel M (2001) Synth Met 121:1603CrossRefGoogle Scholar
  22. 22.
    Farrar RR, Shapiro M, Javaid I (2003) Biocontrol 48:1386Google Scholar
  23. 23.
    Soucek MD, Johnson AJ (2005) Polym Adv Technol 16:257CrossRefGoogle Scholar
  24. 24.
    Price LP (1995) J Coat Technol 67:27Google Scholar
  25. 25.
    Decker C, Biry S, Zahouily K (1995) Polym Degrad Stab 49:111CrossRefGoogle Scholar
  26. 26.
    Li Q, Dong P (2003) J Colloid Interface Sci 261:325CrossRefGoogle Scholar
  27. 27.
    Guo XC, Dong P (1999) Langmuir 15:5535CrossRefGoogle Scholar
  28. 28.
    Hanprasopwattana A, Srinivasan S, Sault AG, Datye AK (1996) Langmuir 12:3173CrossRefGoogle Scholar
  29. 29.
    Fu X, Qutubuddin S (2001) Colloids Surf A Physicoche Eng Asp 178:151CrossRefGoogle Scholar
  30. 30.
    Kim KD, Bae HJ, Kim HT (2003) Colloids Surf A Physicoche Eng Asp 224:119CrossRefGoogle Scholar
  31. 31.
    Cheng P, Zheng M, Jin Y, Huang Q, Gu M (2003) Mater Lett 57:2989CrossRefGoogle Scholar
  32. 32.
    Castillo R, Koch B, Ruiz P, Deimon B (1994) J Mater Chem 4:903CrossRefGoogle Scholar
  33. 33.
    Hsu WP, Yu R, Matijevic E (1993) J Colloid Interface Sci 156:56CrossRefGoogle Scholar
  34. 34.
    Lin CC, Basil JD (1986) In better ceramics through chemistry III. In: Materials research society, materials research society, Pittsburgh, PA, pp 15–25Google Scholar
  35. 35.
    Zong Z, Soucek MD, Xue CC (2005) J Polym Sci: Part A: Polym Chem 43:1607CrossRefGoogle Scholar
  36. 36.
    Wohrle D (2001) Macromol Rapid Commun 22:68CrossRefGoogle Scholar
  37. 37.
    Miller JB, Johnston S, Ko E (1994) J Catal 150:311CrossRefGoogle Scholar
  38. 38.
    We have employed Hyperchem 7.5, Hypercube Inc., as well as the VAMP Module in Materials Studio 4.0, Accelrys, IncGoogle Scholar
  39. 39.
    Williams Q (1995) In: Ahrens TJ (ed) Mineral physics and crystallography. American Geophysical Union, Washington, pp 291–297Google Scholar
  40. 40.
    Odian G (1991) Principles of polymerization, 3rd edn. Wiley, New YorkGoogle Scholar
  41. 41.
    Lee J, Kong S, Kim W, Kim J (2007) Mater Chem Phys 106:39CrossRefGoogle Scholar
  42. 42.
    Mabakazu A, Kawamura T, Kodama S (1998) J Phys Chem 92:438Google Scholar
  43. 43.
    Vogel R, Hoyer P, Weller H (1994) J Phys Chem 98:3183CrossRefGoogle Scholar
  44. 44.
    Minero C, Catozzo Pelizzetti FE (1992) Langmuir 8:481CrossRefGoogle Scholar
  45. 45.
    Kornman C, Bahnemann D, Hoffmann M (1991) Environ Sci Technol 25:494CrossRefGoogle Scholar
  46. 46.
    Lim SH, Phonthammachai N, Pramana SS, White TJ (2008) Langmuir 24:6226CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Boisjolly G, Rivory J, Kilian L, Colliex C (1994) Thin Solid Films 253:299CrossRefGoogle Scholar
  48. 48.
    Song Y, Sakurai T, Kishimoto K, Maruta K, Matsumoto S, Kikuchi K (1998) Vacuum 51:525CrossRefGoogle Scholar
  49. 49.
    Miyamoto Y, Kirihara S, Kanehira S (2004) J Appl Ceram Technol 1:61Google Scholar
  50. 50.
    Schultz PC (1976) J Am Ceram Soc 59:214CrossRefGoogle Scholar
  51. 51.
    Becker MR, Cavender R, Elder ML, Jones PC, Murphy JA (1991) US Pat 5067975Google Scholar

Copyright information

© Springer Science & Business Media BV 2010

Authors and Affiliations

  • Liang Zhou
    • 1
  • Hendrik Heinz
    • 1
  • Mark D. Soucek
    • 1
  • Elvin A. Alemán
    • 2
  • David A. Modarelli
    • 2
  1. 1.Department of Polymer EngineeringUniversity of AkronAkronUSA
  2. 2.Department of Chemistry and The Center for Laser and Optical SpectroscopyUniversity of AkronAkronUSA

Personalised recommendations