, Volume 1, Issue 3, pp 147–163 | Cite as

Organosilicon Biotechnology

  • Mark B. Frampton
  • Paul Martin Zelisko
Original Paper


Inspired by Nature, biocatalysis and biotechnology have quickly become burgeoning fields in silicon chemistry. From cell cultures to isolated enzymes researchers are exploring the use of biological systems to affect chemical transformations at or near silicon atoms. This review will examine the history of biotechnology as it pertains to organosilicon compounds (i.e., compounds with one or more Si-C bonds) and provide some insights into future directions for the field.


Silicon Biotechnology Biocatalysis Silicone Silica 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morse DE (1999) Trends in Biotechnol 17:230–232Google Scholar
  2. 2.
    Robinson R, Kipping FS (1912) Trans Chem Soc 101:2156–2166Google Scholar
  3. 3.
    Kipping FS (1912) Trans Chem Soc 101:2108–2125Google Scholar
  4. 4.
    Kipping FS (1912) Trans Chem Soc 101:2125–2142Google Scholar
  5. 5.
    Robinson R, Kipping FS (1912) Trans Chem Soc 101:2142–2155Google Scholar
  6. 6.
    Robinson R, Kipping FS (1912) Trans Chem Soc 101:2156–2166Google Scholar
  7. 7.
    Robinson R, Kipping FS (1914) Trans Chem Soc 105:40–49Google Scholar
  8. 8.
    Kipping FS, Robinson R (1914) Trans Chem Soc 105:484–500Google Scholar
  9. 9.
    Meads JA, Kipping FS (1914) Trans Chem Soc 105:679–690Google Scholar
  10. 10.
    Pink HS, Kipping FS (1923) Trans Chem Soc 123:2830–2837Google Scholar
  11. 11.
    Kipping FS (1937) Proc Roy Soc Lond Ser A 159:139–148Google Scholar
  12. 12.
    Brook AG, Abdesaken F, Gutekunst B, GutekunstG, Kallury RK (1981) J Chem Soc Chem Commun 191–192Google Scholar
  13. 13.
    West R, Fink MJ, Michl J (1981) Science 214:1343–1344Google Scholar
  14. 14.
    Sekiguchi A, Kinjo R, Ichinohe M (2004) Science 305:1755–1757Google Scholar
  15. 15.
    Wiberg N, Vasisht SK, Fisher G, Mayer PZ (2004) Anorg Allg Chem 630:1823–1828Google Scholar
  16. 16.
    Iler RK (1979) The chemistry of silica, solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, HobokenGoogle Scholar
  17. 17.
    Lowenstam HA (1986) In: Leadbeater BSC (ed) Biomineralization in lower plants and animals, vol 30. Oxford University Press, New YorkGoogle Scholar
  18. 18.
    Cha JN, Shimizu K, Zhou Y, Christensen SC, Chmelka BF, Stucky GD, Morse DE (1999) Proc Natl Acad of Sci USA 96:361–365Google Scholar
  19. 19.
    Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Angew Chem Int Ed 38:779–782Google Scholar
  20. 20.
    Kröger R, Deutzmann R, Sumper M (2001) J Biol Chem 276:26066–26070Google Scholar
  21. 21.
    Wenz S, Hett R, Richthammer P, Sumper M (2008) Angew Chem Int Ed 47:1729–1732Google Scholar
  22. 22.
    Perry CC, Williams RJP, Fry SC (1987) J Plant Physiol 126:437–448Google Scholar
  23. 23.
    Perry CC, Keeling-Tucker T (1998) Chem Commun 2587–2588Google Scholar
  24. 24.
    Perry CC, Keeling-Tucker T (2003) Colloid Polym Sci 281:652–664Google Scholar
  25. 25.
    Sapei L, Noske R, Strauch P, Paris O (2008) Chem Mater 20:2020–2025Google Scholar
  26. 26.
    Brook MA (2000) Silicon in organic, organometallic, and polymer chemistry. Wiley, New YorkGoogle Scholar
  27. 27.
    Tacke R, Wannagat U (1979) In: (ed) Topics in current chemistry Vol 84: Bio-active organosilicon compounds, Springer-Verlag, Berlin, GermanyGoogle Scholar
  28. 28.
    Tacke R (1999) Angew Chem Int Ed 38:3015–3018Google Scholar
  29. 29.
    Brutchey RL, Morse DE (2008) Chem Rev 108:4915–4934Google Scholar
  30. 30.
    Müller WEG, Li J, Schroeder HC, Qiao L, Wang X (2007) Biogeosciences 4:219–323CrossRefGoogle Scholar
  31. 31.
    Grachev MA, Annenkov VV, Likhoshway YV (2008) Bioessays 30:328–337Google Scholar
  32. 32.
    Schröder HC, Brandt D, Schloβmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WEG (2007) Naturwissenschaften 94:339–359Google Scholar
  33. 33.
    Schröder HC, Wang X, Tremel W, Ushijima H, Müller WEG (2008) Nat Prod Rep 25:455–474Google Scholar
  34. 34.
    Tacke R, Linoh H, Stumpf B, Abraham W, Kieslich K, Ernst L (1983) Zeit für Natur 38:616–620Google Scholar
  35. 35.
    Sydlatk S, Andree H, Stoffregen A, Wagner F, Stumpf B, Ernst L, Zilch H, Tacke R (1987) Appl Microbiol Biotechnol 27:152–158Google Scholar
  36. 36.
    Brook AG (1958) J Am Chem Soc 80:1886–1889Google Scholar
  37. 37.
    Tacke R, Kosub U, Wagner SA, Bertermann R, Schwarz S, Merget S, Gunther K (1998) Organometallics 17:1687–1699Google Scholar
  38. 38.
    Tacke R, Wagner SA, Sperlich J (1994) Chem Ber 127:639–642Google Scholar
  39. 39.
    Wagner SA, Brakmann S, Tacke R (1996) In: Organosilicon chemistry II-from molecules to materials, pp 237–242Google Scholar
  40. 40.
    Therisod M (1989) J Organomet Chem 361:C8–C10Google Scholar
  41. 41.
    Csuk R, Glanzer BI (1991) Chem Rev 91:49–97Google Scholar
  42. 42.
    Zhou B, Goaolan AS, VanMiddlesworth V, Shieh W, Sih CJ (1983) J Am Chem Soc 105:5925–5926Google Scholar
  43. 43.
    Sydltak C, Stoffregen A, Wuttke F, Tacke R (1988) Biotechnol Lett 10:731–736Google Scholar
  44. 44.
    Fisher L, Wagner SA, Tacke R (1995) Appl Microbiol Biotechnol 42:671–674Google Scholar
  45. 45.
    Zani P (2001) J Mol Catal B: Enz 11:279–285Google Scholar
  46. 46.
    Tacke R, Hengelsberg H, Zilch H, Stumpf B (1989) J Organomet Chem 379:211–216Google Scholar
  47. 47.
    Tacke R (1958) In: Sakuri H (ed) Organosilicon and bioorganosilicon chemistry: structure, bonding, reactivity and synthetic application. Ellis Horwood Limited, ChichesterGoogle Scholar
  48. 48.
    Tacke R, Brakmann S, Wuttke F, Fooladi J, Sydlatk C, Schomburg D (1991) J Organomet Chem 403:29–41Google Scholar
  49. 49.
    Tacke R, Wuttke F, Henke H (1992) J Organomet Chem 424:273–280Google Scholar
  50. 50.
    Huber P, Bratovanov S, Beinz S, Syldatk C, Pietzsch M (1996) Tetrahedron: Assym 7:69–78Google Scholar
  51. 51.
    Bienz S, Chapeaurouge A (1991) Helv Chim Acta 74:1477Google Scholar
  52. 52.
    Chapeaurouge A, Bienz S (1993) Helv Chim Acta 76:1876Google Scholar
  53. 53.
    Gibson DT, Koch JR, Kallio RE (1968) Biochemistry 7:2653–2662Google Scholar
  54. 54.
    Smith WC, Whited GM, Lane TH, Sanford K, McAuliffe JC (2008) Enzymatic Dihydroxylation of Aryl Silanes. In: Cheng, NH, Gross RA (eds) Polymer Biocatalysis and Biomaterials II: 434–459Google Scholar
  55. 55.
    Fattakhova AN, Ofitserov EN, Diyakov VM, Naumova RP (1987) FEMS Microbiol Lett 4:317–319Google Scholar
  56. 56.
    Fattakhova AN, Chirko EP, Ofitserov EN (1992) Biol Nauki 4:100–105Google Scholar
  57. 57.
    Tacke R, Wagner SA, Brakmann S, Wuttke F, Eilert U, Fisher L, Syldatk C (1993) J Organomet Chem 458:13–17Google Scholar
  58. 58.
    Ryabov AD (1991) Angew Chem Int Ed Engl 30:931–941Google Scholar
  59. 59.
    Fritsche K, Sydlatk C, Wagner F, Hengelsberg H, Tacke R (1989) Appl Microbiol Biotechnol 31:107–111Google Scholar
  60. 60.
    Tanaka A, Kawamoto T, Sonomoto K (1990) Ann NY Acad Sci 613:702–706Google Scholar
  61. 61.
    Eaborn C (1960) Organosilicon compounds. Butterworths Scientific, LondonGoogle Scholar
  62. 62.
    Zong M, Fukui T, Kawamoto T, Tanaka A (1991) Appl Microbiol Biotechnol 36:40–43Google Scholar
  63. 63.
    Eklund H (1983) Pharm Biochem and Behaviour 18(Supplement 1):73–81Google Scholar
  64. 64.
    Wang YF, Lalonde JJ, Momongan M, Bergbeiter DE, Wong CH (1988) J Am Chem Soc 110:7200–7205Google Scholar
  65. 65.
    De Jeso B, Belair N, Deleuze H, Rascale M, Maillard B (1990) Tetrahedron Lett 31:653–654Google Scholar
  66. 66.
    Santaniello E, Ferraboschi P, Grisenti P (1990) Tetrahedron Lett 31:5657–5660Google Scholar
  67. 67.
    Djerourou A, Blanco L (1991) Tetrahedron Lett 32:6325–6336Google Scholar
  68. 68.
    McDonough MA, Klei HE, Kelly JA (1999) Protein Sci 8:1971–1981Google Scholar
  69. 69.
    Hengelsberg H, Tacke R, Fritsche K, Syldatk C, Wagner F (1991) J Organomet Chem 415:39–45Google Scholar
  70. 70.
    Yamanaka H, Fukui T, Kawamoto T, Tanaka A (1996) Appl Microbiol Biotechnol 45:51–55Google Scholar
  71. 71.
    Tsuji Y, Yamanaka H, Fukui T, Kawamoto T, Tanaka A (1997) Appl Microbiol Biotechnol 47:114–119Google Scholar
  72. 72.
    Yamanaka H, Kawamoto T, Tanaka A (1997) J Ferment Bioeng 84:181–184Google Scholar
  73. 73.
    Pietzsch M, Waniek T, Smith RJ, Bratovanov S, Bienz A, Syldatk C (2000) Monatshefte für Chemie 131:645–653Google Scholar
  74. 74.
    Smith RJ, Pietzsch M, Waniek T, Syldatk C, Bienz S (2001) Tetrahedron: Asymm 12:157–165Google Scholar
  75. 75.
    May O, Siemann M, Pietzsch M, Kiess M, Mattes R, Syldatk C (1988) J Biotechnol 61:1–131Google Scholar
  76. 76.
    Ishikawa H, Yamanaka H, Kawamoto T, Tanaka A (1999) Appl Microbiol Biotechnol 51:470–473Google Scholar
  77. 77.
    Ishikawa H, Yamanaka H, Kawamoto T, Tanaka A (1999) Appl Microbiol Biotechnol 53:19–22Google Scholar
  78. 78.
    Fukui T, Zong M, Kawamoto T, Tanaka A (1992) Appl Microbiol Biotechnol 38:208–213Google Scholar
  79. 79.
    Uejima A, Fukui T, Fukusaki E, Omata T, Kawamoto T, Sonomoto K, Tanaka A (1993) Appl Microbiol Biotechnol 38:482–486Google Scholar
  80. 80.
    Tsuji Y, Fukui T, Kawamoto T, Tanaka A (1994) Appl Microbiol Biotechnol 41:219–224Google Scholar
  81. 81.
    Horton HR, Moran LA, Scrimgeour KG, Perry MD, Rawn JD (1993) Principles of biochemistry, 4th edn. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  82. 82.
    Sonomoto K, Oiki H, Kato Y (1992) Enz Microbiol Technol 14:640–643Google Scholar
  83. 83.
    Li N, Zong M, Liu C, Peng H, Wu H (2003) Biotechnol Lett 25:219–222Google Scholar
  84. 84.
    Li N, Zong M, Peng H, Wu H, Liu C (2003) J Mol Catal B: Enz 22:7–12Google Scholar
  85. 85.
    Huang S, Liu S, Zong M, Xu R (2005) Biotechnol Lett 27:79–82Google Scholar
  86. 86.
    Bassindale AR, Brandstadt KF, Lane TH, Taylor PG (2003) J Inorg Biochem 96:401–406Google Scholar
  87. 87.
    Bassindale AR, Brandstadt KF, Lane TH, Taylor PG (2003) Polymer Preprints 44:570–571Google Scholar
  88. 88.
    Bassindale AR, Brandstadt KF, Lane TH, Taylor PG (2004) Polymer Preprints 45:614–615Google Scholar
  89. 89.
    Maraite A, Ansorge-Schumacher MB, Ganchegui B, Leitner W, Grogan G (2009) J Mol Catal B Enz 56:24–28Google Scholar
  90. 90.
    Zelisko PM, Arnelian K, Dudding T, Simionescu R, Stanisic H (2007) Polymer Preprints 48:984–985Google Scholar
  91. 91.
    Zelisko PM, Arnelian K, Dudding T, Simionescu R, Stanisic H (2010) ACS symposium series (in press)Google Scholar
  92. 92.
    Tacke R, Heinrich T (2002) Silicon Chem 1:35–39Google Scholar
  93. 93.
    Brinker CJ, Scherer GW (1990) Sol-gel science, the chemistry and physics of sol-gel processing. Academic, San DiegoGoogle Scholar
  94. 94.
    Dong H, Brennan JD (2006) Chem Mater 18:541–546Google Scholar
  95. 95.
    Zheng L, Reidy WR, Brennan JD (1997) Anal Chem 69:3940–3949Google Scholar
  96. 96.
    Frampton M, Vawda A, Fletcher J, Zelisko PM (2008) Chem Commun 5544–5546Google Scholar
  97. 97.
    Frampton M, Simionescu R, Zelisko PM (2009) Silicon 1:47–5Google Scholar
  98. 98.
    Buisson P, E El Rassy, Maury S, Pierre AC (2003) J Sol-Gel Sci Techn 27:373–379Google Scholar
  99. 99.
    Coradin T, Coupe A, Livage J (2003) Colloids Surf B 29:189–196Google Scholar
  100. 100.
    Müller WE, Belikov SI, Tremel W, Perry CC, Gieskes WW, Boreiko A, Schröder HC (2006) Micron 37(2):107–120Google Scholar
  101. 101.
    Schröder HC, Krasko A, Le Pennec G, Adell T, Wiens M, Hassanein H, Müller IM, Müller WE (2003) Prog Mol Subcell Biol 33:249–268Google Scholar
  102. 102.
    Schröder HC, Krasko A, Brandt D, Wiens M, Tahir MN, Tremel W, Müller, WEG (2007) Porifera Res biodiversity innovation sustainability. pp 581–592Google Scholar
  103. 103.
    Brandstadt K (2005) Curr Opin Biotechnol 16:393–397Google Scholar
  104. 104.
    Figueroa MP, Flores L, Sanchez J, Cesaretti N (2008) Micron 39:859–867Google Scholar
  105. 105.
    Figueroa MP, Barrera F, Cesaretti NN (2008) Micron 39:1027–1035Google Scholar
  106. 106.
    Nichino H, Mori T, Okahata Y (2002) Chem Commun 2684–2685Google Scholar
  107. 107.
    Müller WEG, Schloβmacher U, Wang X, Boreiko A, Brandt D, Wolf SE, Tremel W, Schröder HC (2008) FEBS J 275:362–370Google Scholar
  108. 108.
    Kumar R, Tyagi R, Parmar VS, Samuelson LA, Kumar J, Schoemann A, Westmoreland PR, Watterson AC (2004) Adv Mater 16:1515–1520Google Scholar
  109. 109.
    Watterson AC, Parmar VS, Kumar R, Sharma SK, Shakil NA, Tyagi R, Sharma AK, Samuelson LA, Kumar J, Nicolosi R, Shea T (2005) Pure Appl Chem 77:201–208Google Scholar
  110. 110.
    Mosurkal R, Samuelson LA, Parmar VS, Kumar J, Watterson AC (2007) Macromolecules 40:7742–7745Google Scholar
  111. 111.
    Tyagi R, Pandey MK, Kumar R, Tucci V, Kumar J, Parmar VS, Watterson AC (2007) Polymer Preprints 48:219Google Scholar
  112. 112.
    Sahoo B, Brandstadt KF, Lane TH, Gross RA (2003) Polymer Preprints 44:617–618Google Scholar
  113. 113.
    Sahoo B, Brandstadt KF, Lane TH, Gross RA (2005) Org Lett 7:3857–3860Google Scholar
  114. 114.
    Palsule AS, Poojari Y, Hadzivrettas V, Stauss DR, Clarson SJ, Gross RA (2007) Polymer Preprints 48:979–980Google Scholar
  115. 115.
    Poojari Y, Palsule AS, Hadzivrettas V, Stauss DR, Clarson SJ, Gross RA (2007) Polymer Preprints 48:982–983Google Scholar
  116. 116.
    Poojari Y, Palsule AS, Cai M, Clarson SJ, Gross RA (2008) Eur Poly J 44:4139–4145Google Scholar
  117. 117.
    Sharma B, Azim A, Azim H, Gross RA, Zini E, Focarete ML, Scandola M (2007) Polymer Preprints 48:981Google Scholar
  118. 118.
    Hwu JR, Ethiraj KS (2002) Disilanes in Science of Synthesis, Flemming I (ed), Volume 4: 187–204Google Scholar

Copyright information

© Springer Science & Business Media BV 2009

Authors and Affiliations

  1. 1.Department of Chemistry and Centre for BiotechnologyBrock UniversitySt. CatharinesCanada

Personalised recommendations