Advertisement

Peripheral electrical stimulation reduces postoperative hypoxemia in patients at risk for obstructive sleep apnea: a randomized-controlled trial

  • Hugh M. SmithEmail author
  • Joan Kilger
  • Christopher M. Burkle
  • Darrell R. Schroeder
  • Bhargavi Gali
Reports of Original Investigations

Abstract

Purpose

Severity of hypoxemic events resulting from obstructive sleep apnea (OSA) is correlated with increased risk of complications and sudden death. We studied the use of a peripheral transcutaneous electrical stimulus (TES) on the magnitude and duration of sleep apnea associated hypoxemia in postoperative patients at high risk for OSA.

Methods

In this randomized, double-blind, controlled, single-centre trial, 106 adult patients undergoing elective surgery who were at medium to high risk for OSA (sleep apnea clinical scores of 18–35) were randomized to either TES (active stimulus group, n = 53) or control (non-stimulus group, n = 53) during their stay in the postanesthesia care unit. Transcutaneous electrical stimuli were delivered at threshold oxygen saturation measurements (SpO2) ≤ 93%. The primary endpoint was the SpO2 area under the curve (AUC) < 90%. Secondary endpoints included the percentage of patients with SpO2 < 90%, duration SpO2 < 90%, lowest SpO2 in the first hour, and adverse events associated with TES.

Results

Compared with controls (n = 45), those in the active group (n = 34) showed a decreased SpO2 AUC < 90% (median 0.0 vs 15.2 % sec, respectively; P = 0.009), a smaller percentage of subjects with SpO2 < 90% (47% active vs 71% control; P = 0.03), a shorter duration of SpO2 < 90% (median 0.0 vs 19.1 sec, respectively; P = 0.01), and a higher nadir of SpO2 recorded during the first hour (median 90.5% vs 87.9%, respectively; P = 0.04). Among patients with at least one SpO2 < 93%, there were fewer with SpO2 < 90% in the active group (55% vs 84%, respectively; P = 0.009). No adverse events related to TES were reported.

Conclusion

In postoperative surgical patients at risk for OSA, peripheral transcutaneous electrical stimulation applied during apneic episodes decreased the duration and magnitude of hypoxemia.

Trial registration

www.ClinicalTrials.gov (NCT02554110); registered 18 September, 2015.

La stimulation électrique périphérique réduit l’hypoxémie postopératoire chez les patients à risque d’apnée obstructive du sommeil : une étude randomisée contrôlée

Résumé

Objectif

La sévérité des incidents hypoxémiques résultant d’une apnée obstructive du sommeil (AOS) est corrélée à un risque accru de complications et de mort subite. Nous avons étudié l’utilisation d’un stimulus électrique transcutané (SET) périphérique sur l’ampleur et la durée de l’hypoxémie associée à l’apnée du sommeil chez des patients postopératoires courant un risque élevé d’AOS.

Méthode

Dans cette étude randomisée, à double insu, contrôlée et monocentrique, 106 patients adultes subissant une chirurgie non urgente et courant un risque modéré à élevé d’AOS (scores cliniques d’apnée du sommeil de 18-35) ont été randomisés à recevoir un SET (groupe stimulus actif, n = 53) ou aucune intervention (groupe sans stimulus, n = 53) pendant leur séjour en salle de réveil. Les stimuli électriques transcutanés ont été appliqués lorsque les mesures de saturation en oxygène atteignaient un seuil de SpO2 ≤ 93 %. Le critère d’évaluation principal était la surface sous la courbe (SSC) de la SpO2 < 90 %. Les critères d’évaluation secondaires comprenaient le pourcentage de patients présentant une SpO2 < 90 %, la durée de la SpO2 < 90 %, la SpO2 la plus basse au cours de la première heure, et les événements indésirables associés au SET.

Résultats

Par rapport au groupe témoin (n = 45), les patients dans le groupe actif (n = 34) ont affiché une SSC réduite de la SpO2 < 90 % (moyenne 0,0 vs 15,2 % sec, respectivement; P = 0,009), un nombre plus faible de patients ayant une SpO2 < 90 % (47 % dans le groupe actif vs 71 % groupe témoin; P = 0,03), une durée plus courte de la SpO2 < 90 % (moyenne 0,0 vs 19,1 sec, respectivement; P = 0,01), ainsi qu’un nadir plus élevé de SpO2 enregistré au cours de la première heure (moyenne 90,5 % vs 87,9 %, respectivement; P = 0,04). Parmi les patients ayant au moins une SpO2 < 93 %, il y avait moins de patients avec une SpO2 < 90 % dans le groupe actif (55 % vs 84 %, respectivement; P = 0,009). Aucun événement indésirable lié au SET n’a été rapporté.

Conclusion

Chez les patients chirurgicaux postopératoires courant un risque d’AOS, une stimulation électrique transcutanée périphérique appliquée pendant les épisodes d’apnée a réduit la durée et l’ampleur de l’hypoxémie.

Enregistrement de l’étude

www.ClinicalTrials.gov (NCT02554110); enregistrée le 18 septembre 2015.

Notes

Acknowledgements

The authors would like to recognize the following people who contributed in various ways to ensure a successful project: Joel Kuhlmann, M.S. and Steven Deick, M.H.A. Division of Engineering Mayo Clinic; Richard Hinds, R.R.T., Bradley Narr, M.D, Linda Weise, R.R.T., Brenda Anderson, RN., and David Plevak, M.D. Mayo Clinic Department of Anesthesiology and Perioperative Medicine; Bruce Walters, Consistent Systems software development; Randall Newman, Mayo Clinic Division of Engineering safety engineer; and Albert J. Kilger, B.S., Graphics.

Declaration of interest

Mayo Clinic owns and has licensed the intellectual property for technology described in this research. This license agreement, with MediPines, was made after the study protocol and study prototypes were fully developed. Mayo Clinic and investigators Joan Kilger, M.S. and Richard Hinds, R.R.T. have a financial interest in technology used in this research. Mayo Clinic and these investigators may stand to gain financially from the successful outcome of this research. Kilger (author) and Hinds (contributor) did not participate in enrollment of study participants or participate in the analysis and interpretation of study data.

Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Steven Backman, Associate Editor, Canadian Journal of Anesthesia.

Author contributions

Hugh M. Smith, Joan Kilger, Christopher M. Burkle, Darrell R. Schroeder, and Bhargavi Gali certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript.

Funding

Mayo Clinic, “Discovery, Translation, Program” internal funding grant.

References

  1. 1.
    Senaratna CV, Perret JL, Lodge CJ, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 2017; 34: 70-81.CrossRefGoogle Scholar
  2. 2.
    Garvey JF, Pengo MF, Drakatos P, Kent BD. Epidemiological aspects of obstructive sleep apnea. J Thorac Dis 2015; 7: 920-9.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 2013; 177: 1006-14.CrossRefGoogle Scholar
  4. 4.
    Finkel KJ, Searleman AC, Tymkew H, et al. Prevalence of undiagnosed obstructive sleep apnea among adult surgical patients in an academic medical center. Sleep Med 2009; 10: 753-8.CrossRefGoogle Scholar
  5. 5.
    Opperer M, Cozowicz C, Bugada D, et al. Does obstructive sleep apnea influence perioperative outcome? A qualitative systematic review for the Society of Anesthesia and Sleep Medicine Task Force on Preoperative Preparation of Patients with Sleep-Disordered Breathing. Anesth Analg 2016; 122: 1321-34.CrossRefGoogle Scholar
  6. 6.
    Kaw R, Chung F, Pasupuleti V, Mehta J, Gay PC, Hernandez AV. Meta-analysis of the association between obstructive sleep apnoea and postoperative outcome. Br J Anaesth 2012; 109: 897-906.CrossRefGoogle Scholar
  7. 7.
    Davis MP, Behm B, Balachandran D. Looking both ways before crossing the street: assessing the benefits and risk of opioids in treating patients at risk of sleep -disordered breathing for pain and dyspnea. J Opioid Manag 2017; 13: 183-96.CrossRefGoogle Scholar
  8. 8.
    Sun Z, Sessler DI, Dalton JE, et al. Postoperative hypoxemia is common and persistent: a prospective blinded observational study. Anesth Analg 2015; 121: 709-15.CrossRefGoogle Scholar
  9. 9.
    Kaw R, Pasupuleti V, Walker E, Ramaswamy A, Foldvary-Schafer N. Postoperative complications in patients with obstructive sleep apnea. Chest 2012; 141: 436-41.CrossRefGoogle Scholar
  10. 10.
    Carr GE, Mokhlesi B, Gehlbach BK. Acute cardiopulmonary failure from sleep-disordered breathing. Chest 2012; 141: 798-808.CrossRefGoogle Scholar
  11. 11.
    Dyken ME, Yamada T, Glenn CL, Berger HA. Obstructive sleep apnea associated with cerebral hypoxemia and death. Neurology 2004; 62: 491-3.CrossRefGoogle Scholar
  12. 12.
    Gami AS, Olson EJ, Shen WK, et al. Obstructive sleep apnea and the risk of sudden cardiac death: a longitudinal study of 10,701 adults. J Am Coll Cardiol 2013; 62: 610-6.CrossRefGoogle Scholar
  13. 13.
    Benumof JL. Mismanagement of obstructive sleep apnea may result in finding these patients dead in bed. Can J Anesth 2016; 63: 3-7.CrossRefGoogle Scholar
  14. 14.
    Subramani Y, Nagappa M, Wong J, Patra J, Chung F. Death or near-death in patients with obstructive sleep apnoea: a compendium of case reports of critical complications. Br J Anaesth 2017; 119: 885-99.CrossRefGoogle Scholar
  15. 15.
    Lynn LA, Curry JP. Patterns of unexpected in-hospital deaths: a root cause analysis. Patient Saf Surg 2011; 5: 3.CrossRefGoogle Scholar
  16. 16.
    Miki H, Hida W, Chonan T, Kikuchi Y, Takishima T. Effects of submental electrical stimulation during sleep on upper airway patency in patients with obstructive sleep apnea. Am Rev Respir Dis 1989; 140: 1285-9.CrossRefGoogle Scholar
  17. 17.
    Edmonds LC, Daniels BK, Stanson AW, Sheedy PF 3rd, Shepard JW Jr. The effects of transcutaneous electrical stimulation during wakefulness and sleep in patients with obstructive sleep apnea. Am Rev Respir Dis 1992; 146: 1030-6.CrossRefGoogle Scholar
  18. 18.
    Decker MJ, Haaga J, Arnold JL, Atzberger D, Strohl KP. Functional electrical stimulation and respiration during sleep. J Appl Physiol 1993; 75: 1053-61.CrossRefGoogle Scholar
  19. 19.
    Hida W, Okabe S, Miki H, et al. Effects of submental stimulation for several consecutive nights in patients with obstructive sleep apnoea. Thorax 1994; 49: 446-52.CrossRefGoogle Scholar
  20. 20.
    Guilleminault C, Powell N, Bowman B, Stoohs R. The effect of electrical stimulation on obstructive sleep apnea syndrome. Chest 1995; 107: 67-73.CrossRefGoogle Scholar
  21. 21.
    Pengo MF, Steier J. Emerging technology: electrical stimulation in obstructive sleep apnoea. J Thorac Dis 2015; 7: 1286-97.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Bisogni V, Pengo MF, De Vito A, et al. Electrical stimulation for the treatment of obstructive sleep apnoea: a review of the evidence. Expert Rev Respir Med 2017; 11: 711-20.CrossRefGoogle Scholar
  23. 23.
    Kuhlmann J, Deick S. Design of an Oxistimulator system for use in clinical trials - 2017. Available from URL: https://ieeexplore.ieee.org/document/7985871/ (accessed April 2019).
  24. 24.
    Masimo Corporation. Radical-7 pulse CO-Oximeter®. Available from URL: http://www.masimo.com/products/continuous/radical-7/ (accessed April 2019).
  25. 25.
    Digitimer. DS7A. Available from URL: https://digitimer.com/constant-current-stimulators/ (accessed April 2019).
  26. 26.
    Digitimer. Bar Stimulating Electrode. Available from URL: https://digitimer.com/products/human-neurophysiology/neurodiagnostic-accessories/bar-stimulating-electrode/ (accessed April 2019).
  27. 27.
    Motion Workshop. MotionNode. Available from URL: https://www.motionnode.com/imu.html (accessed April 2019).
  28. 28.
    Kinesis Corporation. Savant Elite Foot Pedal. Available from URL: https://kinesis-ergo.com/shop/1-pedal-for-savant-elite2-jsb/ (accessed April 2019).
  29. 29.
    Masimo C. Signal IQ Technology - 2008. Available from URL: http://www.masimo.co.jp/pdf/whitepaper/LAB3412C.pdf (accessed April 2019).
  30. 30.
    Zornow MH. Clinical testing of the apnea prevention device: proof of concept data. Anesth Analg 2011; 112: 582-6.CrossRefGoogle Scholar
  31. 31.
    Flemons WW, Whitelaw WA, Brant R, Remmers JE. Likelihood ratios for a sleep apnea clinical prediction rule. Am J Respir Crit Care Med 1994; 150(5 Pt 1): 1279-85.CrossRefGoogle Scholar
  32. 32.
    Gali B, Whalen FX, Schroeder DR, Gay PC, Plevak DJ. Identification of patients at risk for postoperative respiratory complications using a preoperative obstructive sleep apnea screening tool and postanesthesia care assessment. Anesthesiology 2009; 110: 869-77.CrossRefGoogle Scholar
  33. 33.
    Webb RK, Ralston AC, Runciman WB. Potential errors in pulse oximetry. II. Effects of changes in saturation and signal quality. Anaesthesia 1991; 46: 207-12.CrossRefGoogle Scholar
  34. 34.
    Sands SA, Edwards BA, Kelly VJ, et al. Mechanism underlying accelerated arterial oxygen desaturation during recurrent apnea. Am J Respir Crit Care Med 2010; 182: 961-9.CrossRefGoogle Scholar
  35. 35.
    Wilkinson MH, Berger PJ, Blanch N, Brodecky V. Effect of venous oxygenation on arterial desaturation rate during repetitive apneas in lambs. Respir Physiol 1995; 101: 321-31.CrossRefGoogle Scholar
  36. 36.
    Hlavac MC, Catcheside PG, McDonald R, Eckert DJ, Windler S, McEvoy RD. Hypoxia impairs the arousal response to external resistive loading and airway occlusion during sleep. Sleep 2006; 29: 624-31.PubMedGoogle Scholar
  37. 37.
    Chung F, Memtsoudis SG, Ramachandran SK, et al. Society of Anesthesia and Sleep Medicine Guidelines on Preoperative Screening and Assessment of Adult Patients With Obstructive Sleep Apnea. Anesth Analg 2016; 123: 452-73.CrossRefGoogle Scholar
  38. 38.
    Lockhart EM, Willingham MD, Abdallah AB, et al. Obstructive sleep apnea screening and postoperative mortality in a large surgical cohort. Sleep Med 2013; 14: 407-15.CrossRefGoogle Scholar
  39. 39.
    Singh M, Liao P, Kobah S, Wijeysundera DN, Shapiro C, Chung F. Proportion of surgical patients with undiagnosed obstructive sleep apnoea. Br J Anaesth 2013; 110: 629-36.CrossRefGoogle Scholar
  40. 40.
    Fernandez-Bustamante A, Bartels K, Clavijo C, et al. Preoperatively screened obstructive sleep apnea is associated with worse postoperative outcomes than previously diagnosed obstructive sleep apnea. Anesth Analg 2017; 125: 593-602.CrossRefGoogle Scholar
  41. 41.
    Voepel-Lewis T, Parker ML, Burke CN, et al. Pulse oximetry desaturation alarms on a general postoperative adult unit: a prospective observational study of nurse response time. Int J Nurs Stud 2013; 50: 1351-8.CrossRefGoogle Scholar
  42. 42.
    Rheineck-Leyssius AT, Kalkman CJ. Influence of pulse oximeter settings on the frequency of alarms and detection of hypoxemia: theoretical effects of artifact rejection, alarm delay, averaging, median filtering or a lower setting of the alarm limit. J Clin Monit Comput 1998; 14: 151-6.CrossRefGoogle Scholar
  43. 43.
    Gross B, Dahl D, Nielsen L. Physiologic monitoring alarm load on medical/surgical floors of a community hospital. Biomed Instrum Technol 2011; Suppl: 29-36.Google Scholar
  44. 44.
    Wilken M, Hüske-Kraus D, Klausen A, Koch C, Schlauch W, Röhrig R. Alarm fatigue: causes and effects. Stud Health Technol Inform 2017; 243: 107-11.PubMedGoogle Scholar
  45. 45.
    Taenzer AH, Pyke JB, McGrath SP, Blike GT. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology 2010; 112: 282-7.CrossRefGoogle Scholar
  46. 46.
    Bixler EO, Vgontzas AN, Lin HM, et al. Prevalence of sleep-disordered breathing in women: effects of gender. Am J Respir Crit Care Med 2001; 163(3 Pt 1): 608-13.CrossRefGoogle Scholar
  47. 47.
    Quintana-Gallego E, Carmona-Bernal C, Capote F, et al. Gender differences in obstructive sleep apnea syndrome: a clinical study of 1166 patients. Respir Med 2004; 98: 984-9.CrossRefGoogle Scholar
  48. 48.
    Basoglu OK, Tasbakan MS. Gender differences in clinical and polysomnographic features of obstructive sleep apnea: a clinical study of 2827 patients. Sleep Breath 2018; 22: 241-9.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterUSA
  2. 2.Department of Biomedical Statistics and InformaticsMayo ClinicRochesterUSA

Personalised recommendations