Effects of neuromuscular block reversal with sugammadex versus neostigmine on postoperative respiratory outcomes after major abdominal surgery: a randomized-controlled trial

  • Enrique AldayEmail author
  • Manolo Muñoz
  • Antonio Planas
  • Esperanza Mata
  • Carlos Alvarez
Reports of Original Investigations



Postoperative pulmonary complications may be better reduced by reversal of neuromuscular block with sugammadex than by reversal with neostigmine because the incidence of residual block after sugammadex application is lower and diaphragm function is less impaired than after neostigmine administration. The aim of the study was to compare the effect of reversal of neuromuscular block with sugammadex or neostigmine on lung function after major abdominal surgery.


One hundred and thirty adults scheduled for major abdominal surgery under combined general and epidural anesthesia were randomly allocated to receive 40 µg of neostigmine or 4 mg·kg−1 of sugammadex to reverse neuromuscular block. Two blinded researchers performed spirometry and lung ultrasound before the surgery, as well as 1 hr and 24 hr postoperatively. Differences in mean changes from baseline were analyzed with repeated measures analysis of variance. Forced vital capacity (FVC) loss one hour after surgery was the main outcome. Secondary outcomes were differences in rate and size of atelectasis one hour and 24 hr after surgery.


One hundred twenty-six patients were included in the main analysis. In the neostigmine group (n = 64), mean (95% confidence interval [95% CI]) reduction in FVC after one hour was 0.5 (0.4 to 0.6) L. In the sugammadex group (n = 62), the mean (95% CI) reduction in FVC during the first hour was 0.5 (95% CI, 0.3 to 0.6) L. Thirty-nine percent of patients in the neostigmine group and 29% in the sugammadex group had visible atelectasis. Median [interquartile range (IQR)] atelectasis area was 9.7 [4.7–13.1] cm2 and 6.8 [3.6–12.5] cm2, respectively.


We found no differences in pulmonary function in patients reversed with sugammadex or neostigmine in a high-risk population.

Trial registration

EudraCT 2014-005156-26; registered 27 May, 2015.

Effets du renversement du bloc neuromusculaire à l’aide de sugammadex vs de la néostigmine sur l’évolution respiratoire postopératoire après une chirurgie abdominale majeure: une étude randomisée contrôlée



Les complications pulmonaires postopératoires pourraient être mieux contrôlées en neutralisant le bloc neuromusculaire avec du sugammadex plutôt qu’avec de la néostigmine; en effet, l’incidence de bloc résiduel après l’administration de sugammadex est plus faible et la fonction du diaphragme moins affectée qu’après l’administration de néostigmine. L’objectif de cette étude était de comparer l’effet d’une neutralisation du bloc neuromusculaire réalisée à l’aide de sugammadex vs de la néostigmine sur la fonction pulmonaire après une chirurgie abdominale majeure.


Cent trente adultes devant subir une chirurgie abdominale majeure sous anesthésie générale et péridurale combinée ont été randomisés à recevoir 40 µg de néostigmine ou 4 mg·kg1 de sugammadex afin de neutraliser le bloc neuromusculaire. Deux chercheurs en aveugle ont réalisé une spirométrie et une échographie pulmonaire avant la chirurgie, ainsi que 1 h et 24 h après l’opération. Les différences de changements moyens par rapport aux mesures de départ ont été analysées à l’aide de mesures répétées d’analyse de la variance. La perte de capacité vitale forcée (CVF) une heure après la chirurgie était notre critère d’évaluation principal. Les critères secondaires comprenaient les différences des taux et de taille de l’atélectasie une heure et 24 h après la chirurgie.


Cent vingt-six patients ont été inclus dans l’analyse principale. Dans le groupe néostigmine (n = 64), la réduction moyenne (intervalle de confiance 95 % [IC 95 %]) de CVF après une heure était de 0,5 (0,4 à 0,6) L. Dans le groupe sugammadex (n = 62), la réduction moyenne (IC 95 %) de CVF au cours de la première heure était de 0,5 (IC 95 %, 0,3 à 0,6) L. On a observé une atélectasie visible chez 39 % des patients du groupe néostigmine et 29 % des patients du groupe sugammadex. La surface médiane [écart interquartile (EIQ)] d’atélectasie était de 9,7 [4,7–13,1] cm2 et 6,8 [3,6–12,5] cm2, respectivement.


Nous n’avons découvert aucune différence en ce qui touche à la fonction pulmonaire chez les patients neutralisés au sugammadex ou à la néostigmine dans une population à risque élevé.

Enregistrement de l’étude

EudraCT 2014-005156-26; enregistrée le 27 mai 2015.



Clinical investigators: Ana Aroca, Ana Gomez, Esther García-Villabona, Carmen Vallejo, Jesus Nieves, Ana Carmona, Diana Parrado, Rafael Morales.

Patient recruitment: Elena Rojo, Jara Torrente, Julia Hernando, Sonia Expósito, Elena Hernando, Marta Solera, David Arribas, Barbara Algar, Marina Valenzuela.

Provided care for study patients: General surgery department and operation room staff. Post-surgical critical care unit. University Hospital La Princesa, Madrid.

Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Gregory L. Bryson, Deputy Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

Enrique Alday was involved in the promotion, study design, patient recruitment, spirometry and lung ultrasound, data collection, data analysis, and writing of the manuscript. Manolo Muñoz was involved in the study design, spirometry and lung ultrasound, data collection, offline lung ultrasound analysis, planimetry, and writing of the manuscript. Carlos Alvarez was involved in the study design, patient recruitment, data collection, and revising the manuscript. Esperanza Mata was involved in the study design, patient recruitment, data collection, and revising the manuscript. Antonio Planas was involved in the study design and writing of the manuscript.


This work was supported by a project grant from Merck Investigator Studies Program (MISP) (VT ID# 51875) of 70,490 euros.

The study was sponsored but not monitored by the company. Merck had no role in or authority over the study design; collection, management, analysis, and interpretation of data; writing of the report; or the decision to submit the report for publication. The opinions expressed in this publication are those of the authors and do not necessarily represent those of the financer.


  1. 1.
    Ball L, Battaglini D, Pelosi P. Postoperative respiratory disorders. Curr Opin Crit Care 2016; 22: 379-85.CrossRefGoogle Scholar
  2. 2.
    Fuchs-Buder T, Nemes R, Schmartz D. Residual neuromuscular blockade: management and impact on postoperative pulmonary outcome. Curr Opin Anaesthesiol 2016; 29: 662-7.CrossRefGoogle Scholar
  3. 3.
    Martinez-Ubieto J, Ortega-Lucea S, Pascual-Bellosta A, et al. Prospective study of residual neuromuscular block and postoperative respiratory complications in patients reversed with neostigmine versus sugammadex. Minerva Anestesiol 2016; 82: 735-42.PubMedGoogle Scholar
  4. 4.
    Kumar GV, Nair AP, Murthy HS, Jalaja KR, Ramachandra K, Parameshwara G. Residual neuromuscular blockade affects postoperative pulmonary function. Anesthesiology 2012; 117: 1234-44.CrossRefGoogle Scholar
  5. 5.
    Brueckmann B, Sasaki N, Grobara P, et al. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: a randomized, controlled study. Br J Anaesth 2015; 115: 743-51.CrossRefGoogle Scholar
  6. 6.
    Cammu G, Schepens T, De Neve N, Wildemeersch D, Foubert L, Jorens PG. Diaphragmatic and intercostal electromyographic activity during neostigmine, sugammadex and neostigmine-sugammadex-enhanced recovery after neuromuscular blockade: a randomised controlled volunteer study. Eur J Anaesthesiol 2016; 33: 8-15.Google Scholar
  7. 7.
    Anonymous. Standardization of spirometry, 1994 update. American Thoracic Society. Am J Respir Crit Care Med 1995; 152: 1107-36.Google Scholar
  8. 8.
    Lichtenstein DA. Lung ultrasound in the critically ill. Ann Intensive Care 2014; 4: 1.CrossRefGoogle Scholar
  9. 9.
    Rueden CT, Eliceiri KW. Visualization approaches for multidimensional biological image data. Biotechniques 2007; 43(1 Suppl): 31, 33-6.CrossRefGoogle Scholar
  10. 10.
    Rennard S, Fogarty C, Reisner C, et al. Randomized study of the safety, pharmacokinetics, and bronchodilatory efficacy of a proprietary glycopyrronium metered-dose inhaler in study patients with chronic obstructive pulmonary disease. BMC Pulm Med 2014; 14: 118.CrossRefGoogle Scholar
  11. 11.
    Beeh KM, Moroni-Zentgraf P, Ablinger O, et al. Tiotropium Respimat® in asthma: a double-blind, randomised, dose-ranging study in adult patients with moderate asthma. Respir Res 2014; 15: 61.CrossRefGoogle Scholar
  12. 12.
    Treschan TA, Kaisers W, Schaefer MS, et al. Ventilation with low tidal volumes during upper abdominal surgery does not improve postoperative lung function. Br J Anaesth 2012; 109: 263-71.CrossRefGoogle Scholar
  13. 13.
    Joris J, Kaba A, Lamy M. Postoperative spirometry after laparoscopy for lower abdominal or upper abdominal surgical procedures. Br J Anaesth 1997; 79: 422-6.CrossRefGoogle Scholar
  14. 14.
    Treschan TA, Schaefer M, Kemper J, et al. Ventilation with high versus low peep levels during general anaesthesia for open abdominal surgery does not affect postoperative spirometry: a randomised clinical trial. Eur J Anaesthesiol 2017; 34: 534-43.CrossRefGoogle Scholar
  15. 15.
    Kimball WR, Carwood CM, Chang Y, McKenna JM, Peters LE, Ballantyne JC. Effect of effort pain after upper abdominal surgery on two independent measures of respiratory function. J Clin Anesth 2008; 20: 200-5.CrossRefGoogle Scholar
  16. 16.
    Duggan M, Kavanagh BP. Atelectasis in the perioperative patient. Curr Opin Anaesthesiol 2007; 20: 37-42.CrossRefGoogle Scholar
  17. 17.
    Severgnini P, Selmo G, Lanza C, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology 2013; 118: 1307-21.CrossRefGoogle Scholar
  18. 18.
    Yang D, Grant MC, Stone A, Wu CL, Wick EC. A meta-analysis of intraoperative ventilation strategies to prevent pulmonary complications: is low tidal volume alone sufficient to protect healthy lungs? Ann Surg 2016; 263: 881-7.CrossRefGoogle Scholar
  19. 19.
    Guay J, Ochroch EA. Intraoperative use of low volume ventilation to decrease postoperative mortality, mechanical ventilation, lengths of stay and lung injury in patients without acute lung injury. Cochrane Database Syst Rev 2015; 12: CD011151.Google Scholar
  20. 20.
    Acosta CM, Maidana GA, Jacovitti D, et al. Accuracy of transthoracic lung ultrasound for diagnosing anesthesia-induced atelectasis in children. Anesthesiology 2014; 120: 1370-9.CrossRefGoogle Scholar
  21. 21.
    Greco M, Capretti G, Beretta L, Gemma M, Pecorelli N, Braga M. Enhanced recovery program in colorectal surgery: a meta-analysis of randomized controlled trials. World J Surg 2014; 6: 1531-41.CrossRefGoogle Scholar
  22. 22.
    Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg 2008; 107: 130-7.CrossRefGoogle Scholar
  23. 23.
    Abrishami A, Ho J, Wong J, Yin L, Chung F. Sugammadex, a selective reversal medication for preventing postoperative residual neuromuscular blockade. Cochrane Database Syst Rev 2009; 4: CD007362.Google Scholar
  24. 24.
    Kirmeier E, Eriksson LI, Lewald H, et al. Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study. Lancet Respir Med 2019; 7: 129-40.CrossRefGoogle Scholar
  25. 25.
    PROVE Network Investigators, for the Clinical Network of the European Society of Anaesthesiology; Hemmes SN, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 2014; 384: 495-503.Google Scholar
  26. 26.
    Ferrando C, Soro M, Unzueta C, et al. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal Surgery (iPROVE): a randomised controlled trial. Lancet Respir Med 2018; 6: 193-203.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2019

Authors and Affiliations

  1. 1.Hospital Universitario La PrincesaMadridSpain

Personalised recommendations