Advertisement

Patient management algorithm combining processed electroencephalographic monitoring with cerebral and somatic near-infrared spectroscopy: a case series

  • Etienne J. Couture
  • Alain Deschamps
  • André Y. DenaultEmail author
Case Reports / Case Series
  • 49 Downloads

Abstract

Purpose

Cerebral oximetry is a monitoring tool used in the perioperative care of cardiac surgery patients to ensure adequate cerebral perfusion and oxygenation. When combined with somatic oximetry, the differential diagnosis of cerebral desaturation can be better identified and managed more specifically, as somatic oximetry serves as a global or localized perfusion monitor (depending on its regional position). The use of processed electroencephalography (pEEG) in cardiac surgery could further guide the management of desaturation episodes, as reductions in pEEG activity without a change in the anesthetic agent level indicate potential cerebral ischemia. Continuous integration of multiple monitoring modalities are thus desirable to assess organ perfusion and organ function.

Clinical features

Four clinical cases are presented in which the combination of pEEG and cerebro-somatic oximetry assisted with understanding the mechanism of cerebral desaturation encountered during cardiac surgery.

Conclusion

Integrating combinations of different monitoring modalities such as cerebral and somatic oximetry with pEEG can help the diagnosis and treatment of organ malperfusion and related dysfunction.

Algorithme de gestion du patient combinant le monitorage de l’électroencéphalogramme traité et la spectroscopie cérébrale et somatique dans le proche infra rouge : une série de cas

Résumé

Objectif

L’oxymétrie cérébrale est un outil de monitorage utilisé dans les soins périopératoires des patients de chirurgie cardiaque pour s’assurer que leur cerveau est adéquatement perfusé et oxygéné. Quand on la combine à l’oxymétrie somatique, le diagnostic différentiel de désaturation cérébrale peut être mieux identifié et géré de manière plus spécifique, car l’oxymétrie somatique permet un suivi de la perfusion globale ou localisée (selon l’emplacement du capteur). L’utilisation de l’électroencéphalographie traitée (pEEG) en chirurgie cardiaque pourrait entraîner une meilleure gestion des épisodes de désaturation dans la mesure ou une baisse de l’activité pEEG sans modification du niveau de l’agent anesthésique indique une ischémie cérébrale potentielle. L’intégration continue de multiples modalités de monitorage est donc souhaitable pour évaluer la perfusion et le fonctionnement des organes.

Caractéristiques cliniques

Quatre cas cliniques sont présentés dans lesquels la combinaison de la pEEG et de l’oxymétrie cérébro-somatique a aidé à comprendre le mécanisme de désaturation cérébrale rencontrée au cours de la chirurgie cardiaque.

Conclusion

Les combinaisons intégrant différentes modalités de monitorage, telles que l’oxymétrie cérébrale et somatique avec la pEEG, peuvent contribuer au diagnostic et au traitement des troubles de la perfusion des organes et des dysfonctionnements qui en découlent.

Notes

Acknowledgements

The authors would like to thank Emily Banks RRT for her advice and teaching in using SedLine, and Denis Babin MSc for the illustrations. Dr. Denault is supported by the Richard I. Kaufman Endowment Fund in Anesthesia and Critical Care and the Montreal Heart Institute Foundation.

Conflicts of interest

Dr. Denault is on the Speakers Bureau for Masimo and CAE Healthcare.

Editorial responsibility

This submission was handled by Dr. Hilary P. Grocott, Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

Etienne J. Couture, Alain Deschamps, and André Y. Denault contributed substantially to all aspects of this manuscript, including study conception and design, acquisition, analysis, and interpretation of data, and drafting the article. André Y. Denault contributed substantially to the acquisition of data.

Funding

Montreal Heart Institute Foundation and Richard I. Kaufman Endowment Fund in Anesthesia.

References

  1. 1.
    Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth 2007; 11: 274-81.CrossRefGoogle Scholar
  2. 2.
    Deschamps A, Lambert J, Couture P, et al. Reversal of decreases in cerebral saturation in high-risk cardiac surgery. J Cardiothorac Vasc Anesth 2013; 27: 1260-6.CrossRefGoogle Scholar
  3. 3.
    Deschamps A, Hall R, Grocott H, et al. Cerebral oximetry monitoring to maintain normal cerebral oxygen saturation during high-risk cardiac surgery: a randomized controlled feasibility trial. Anesthesiology 2016; 124: 826-36.CrossRefGoogle Scholar
  4. 4.
    Subramanian B, Nyman C, Fritock M, et al. A multicenter pilot study assessing regional cerebral oxygen desaturation frequency during cardiopulmonary bypass and responsiveness to an intervention algorithm. Anesth Analg 2016; 122: 1786-93.CrossRefGoogle Scholar
  5. 5.
    Lecluyse V, Couture EJ, Denault AY. A proposed approach to cerebral and somatic desaturation in the intensive care unit: preliminary experience and review. J Cardiothorac Vasc Anesth 2017; 31: 1805-9.CrossRefGoogle Scholar
  6. 6.
    Hu T, Collin Y, Lapointe R, et al. Preliminary experience in combined somatic and cerebral oximetry monitoring in liver transplantation. J Cardiothorac Vasc Anesth 2018; 32: 73-84.CrossRefGoogle Scholar
  7. 7.
    Burton KK, Valentine EA. Combined somatic and cerebral oximetry monitoring in liver transplantation: a novel approach to clinical diagnosis. J Cardiothorac Vasc Anesth 2018; 32: 85-7.CrossRefGoogle Scholar
  8. 8.
    Aldecoa C, Bettelli G, Bilotta F, et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol 2017; 34: 192-214.CrossRefGoogle Scholar
  9. 9.
    Nashef SA, Roques F, Sharples LD, et al. EuroSCORE II. Eur J Cardiothorac Surg 2012; 41: 734-44; discussion 744-5.Google Scholar
  10. 10.
    Dobson G, Chong M, Chow L, et al. Guidelines to the practice of anesthesia - revised edition 2018. Can J Anesth 2018; 65: 76-104.Google Scholar
  11. 11.
    Fuda G, Denault A, Deschamps A, et al. Risk factors involved in central-to-radial arterial pressure gradient during cardiac surgery. Anesth Analg 2016; 122: 624-32.CrossRefGoogle Scholar
  12. 12.
    Couture EJ, Desjardins G, Denault AY. Transcranial Doppler monitoring guided by cranial two-dimensional ultrasonography. Can J Anesth 2017; 64: 885-7.CrossRefGoogle Scholar
  13. 13.
    Plochl W, Cook DJ, Orszulak TA, Daly RC. Intracranial pressure and venous cannulation for cardiopulmonary bypass. Anesth Analg 1999; 88: 329-31.Google Scholar
  14. 14.
    Lahiri S, Schlick KH, Padrick MM, et al. Cerebral pulsatility index is elevated in patients with elevated right atrial pressure. J Neuroimaging 2018; 28: 95-8.CrossRefGoogle Scholar
  15. 15.
    Hassler W, Steinmetz H, Pirschel J. Transcranial Doppler study of intracranial circulatory arrest. J Neurosurg 1989; 71: 195-201.CrossRefGoogle Scholar
  16. 16.
    Choi SH, Min KT, Park EK, Kim MS, Jung JH, Kim H. Ultrasonography of the optic nerve sheath to assess intracranial pressure changes after ventriculo-peritoneal shunt surgery in children with hydrocephalus: a prospective observational study. Anaesthesia 2015; 70: 1268-73.CrossRefGoogle Scholar
  17. 17.
    Wang LJ, Chen LM, Chen Y, et al. Ultrasonography assessments of optic nerve sheath diameter as a noninvasive and dynamic method of detecting changes in intracranial pressure. JAMA Ophthalmol 2018; 136: 250-6.CrossRefGoogle Scholar
  18. 18.
    Denault AY, Shaaban AM, Cournoyer A, Benkreira A, Mailhot T. Near-infrared spectroscopy. In: Prabhakar H (Ed.). Neuromonitoring Techniques: Quick Guide for Clinicians and Residents. San Diego: Academic Press: Elsevier; 2018.Google Scholar
  19. 19.
    Kadoi Y, Kawahara F, Saito S, et al. Effects of hypothermic and normothermic cardiopulmonary bypass on brain oxygenation. Ann Thorac Surg 1999; 68: 34-9.Google Scholar
  20. 20.
    Sokol DK, Markand ON, Daly EC, Luerssen TG, Malkoff MD. Near infrared spectroscopy (NIRS) distinguishes seizure types. Seizure 2000; 9: 323-7.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2019

Authors and Affiliations

  • Etienne J. Couture
    • 1
  • Alain Deschamps
    • 2
  • André Y. Denault
    • 3
    Email author
  1. 1.Division of Critical Care, Department of MedicineUniversité de MontréalMontrealCanada
  2. 2.Department of AnesthesiaMontreal Heart Institute, Université de MontréalMontrealCanada
  3. 3.Department of Anesthesia and Division of Critical CareMontreal Heart Institute, Université de MontréalMontrealCanada

Personalised recommendations