Advertisement

Intraoperative use of dexmedetomidine for the prevention of emergence agitation and postoperative delirium in thoracic surgery: a randomized-controlled trial

  • Jie Ae Kim
  • Hyun Joo AhnEmail author
  • Mikyung Yang
  • Sang Hyun Lee
  • Heejoon Jeong
  • Bong Gyu Seong
Reports of Original Investigations
  • 67 Downloads

Abstract

Purpose

We investigated whether preventive use of dexmedetomidine during surgery was effective for reducing emergence agitation and postoperative delirium.

Methods

In this double-blind randomized-controlled trial, 143 patients undergoing thoracoscopic lung resection surgery were randomly assigned to the dexmedetomidine-sevoflurane (DEX-Sevo, n = 73) or sevoflurane (Sevo, n = 70) groups. Dexmedetomidine or saline administration was started after inducing anesthesia and continued until the end of surgery at a fixed dose (0.5 µg·kg−1·hr−1). The primary endpoint was the incidence of delirium up until the end of postoperative day 3. Emergence agitation and postoperative delirium were measured with the Riker sedation agitation scale and the confusion assessment method, respectively. The secondary endpoints were serum cytokine and catecholamine levels.

Results

The DEX-Sevo group showed less frequent emergence agitation than the Sevo group (13% vs 35%, respectively; relative risk, 0.38; 95% confidence interval [CI], 0.18 to 0.79; P = 0.011) but the incidence of delirium after discharge from the postanesthesia care unit was not different (25% vs 25%, DEX-Sevo vs Sevo). Both pro- and anti-inflammatory cytokines were lower in the DEX-Sevo group than in the Sevo group. Nevertheless, the interleukin (IL)6/IL10 ratio (median difference, 5.8; 95% CI,1.8 to 10.0; P = 0.012) and IL8/IL10 ratio (median difference, 0.8; 95% CI, 0.2 to 1.3; P = 0.007) were higher in the DEX-Sevo group than in the Sevo group, indicating a pro-inflammatory cytokine balance in the DEX-Sevo group. Norepinephrine and epinephrine levels were lower in the DEX-Sevo group than in the Sevo group (both, P < 0.001).

Conclusions

Intraoperative dexmedetomidine reduced emergence agitation but not postoperative delirium in patients undergoing thoracic surgery. Dexmedetomidine seemed to affect emergence agitation through catecholamines, but not through an anti-inflammatory action.

Trial registration Clinical Research Information Service (KCT 0001877); registered 7 April, 2016.

Utilisation peropératoire de la dexmédétomidine pour la prévention de l’agitation au réveil et du delirium postopératoire en chirurgie thoracique: essai randomisé contrôlé

Résumé

Objectif

Nous avons cherché à savoir si l’utilisation préventive de dexmédétomidine au cours de la chirurgie pouvait réduire la survenue de l’agitation au réveil et du delirium postopératoire.

Méthodes

Dans cette étude randomisée, contrôlée à double insu, 143 patients subissant une résection pulmonaire par thoracoscopie ont été randomisés dans un groupe recevant dexmédétomidine-sévoflurane (DEX-Sévo, n = 73) ou dans un groupe recevant seulement du sévoflurane (Sévo, n = 70). L’administration de dexmédétomidine ou de solution saline a débuté après l’induction de l’anesthésie et a continué jusqu’à la fin de l’intervention à une dose fixe de 0,5 µg·kg−1·h−1. Le critère d’évaluation principal était l’incidence du delirium jusqu’à la fin du 3e jour postopératoire. La survenue de l’agitation au réveil et du delirium postopératoire a été mesurée avec, respectivement, l’échelle d’agitation sous sédation de Riker et la méthode d’évaluation de la confusion. Les critères d’évaluation secondaires étaient les taux sériques de cytokines et de catécholamines.

Résultats

La survenue d’une agitation au réveil a été moins fréquente dans le groupe DEX-Sévo que dans le groupe Sévo (respectivement, 13 % contre 35 %; risque relatif, 0,38; intervalle de confiance [IC] à 95 % : 0,18 à 0,79; P = 0,011), mais l’incidence du delirium après congé de la salle de réveil n’a pas été différente entre les groupes (DEX-Sévo 25 % contre Sévo 25 %). Les taux de cytokines pro- et anti-inflammatoires ont tous deux été plus bas dans le groupe DEX-Sévo que dans le groupe Sévo. Néanmoins, les ratios d’interleukines (IL) IL-6/IL-10 (différence entre médianes, 5,8; IC à 95 %, 1,8 à 10,0; P = 0,012) et IL-8/IL-10 (différence des médianes, 0,8; IC à 95 %, 0,2 à 1,3; P = 0,007) ont été plus élevés dans le groupe DEX-Sévo que dans le groupe Sévo indiquant un équilibre des cytokines pro-inflammatoires dans le groupe DEX-Sévo. Les taux de norépinéphrine et d’épinéphrine ont été inférieurs dans le groupe DEX-Sévo que dans le groupe Sévo (P < 0,001 pour les deux).

Conclusions

La dexmédétomidine peropératoire a réduit la survenue de l’agitation au réveil, mais pas du delirium postopératoire chez des patients subissant une chirurgie thoracique. La dexmédétomidine a semblé interférer sur la survenue de l’agitation par le biais des catécholamines, mais pas par un effet anti-inflammatoire.

Enregistrement de l’essai clinique Service d’information sur la recherche clinique (KCT 0001877); enregistré le 7 avril 2016.

Notes

Acknowledgements

The authors thank Kyunga Kim, PhD (Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea) for statistical analysis, and Miyeon Kang and Mijung Oh (the Basic Research Support Center at Samsung Biomedical Research Institute) for immunologic analysis.

Conflicts of interest

None declared.

Editorial responsibility

:This submission was handled by Dr. Philip M. Jones, Associate Editor, Canadian Journal of Anesthesia.

Author contributions

All authors were involved in the study design, planning, study conduct, data analysis, revising, and drafting the manuscript.

Funding

This study was supported by Samsung Medical Center grant [# OTA1503201].

Supplementary material

12630_2019_1299_MOESM1_ESM.pdf (132 kb)
Supplementary material 1 (PDF 132 kb)

References

  1. 1.
    American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults. Postoperative delirium in older adults: best practice statement from the American Geriatrics Society. J Am Coll Surg 2015; 220: 136-48.e1.Google Scholar
  2. 2.
    Avramescu S, Wang DS, Choi S, Orser BA. Preventing delirium: beyond dexmedetomidine. Lancet 2017; 389: 1009.CrossRefGoogle Scholar
  3. 3.
    Su X, Meng ZT, Wu XH, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet 2016; 388: 1893-902.CrossRefGoogle Scholar
  4. 4.
    Kang SH, Kim YS, Hong TH, et al. Effects of dexmedetomidine on inflammatory responses in patients undergoing laparoscopic cholecystectomy. Acta Anaesthesiol Scand 2013; 57: 480-7.CrossRefGoogle Scholar
  5. 5.
    Ueki M, Kawasaki T, Habe K, Hamada K, Kawasaki C, Sata T. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia 2014; 69: 693-700.CrossRefGoogle Scholar
  6. 6.
    Li B, Li Y, Tian S, et al. Anti-inflammatory effects of perioperative dexmedetomidine administered as an adjunct to general anesthesia: a meta-analysis. Sci Rep 2015; 5: 12342.CrossRefGoogle Scholar
  7. 7.
    Zhang J, Zhang W. Effects of dexmedetomidine on inflammatory responses in patients undergoing cardiac valve replacement with cardiopulmonary bypass. Chin J Anesthesiol 2013; 33: 1188-91.Google Scholar
  8. 8.
    Fong TG, Tulebaev SR, Inouyev SK. Delirium in elderly adults: diagnosis, prevention and treatment. Nat Rev Neurol 2009; 5: 210-20.CrossRefGoogle Scholar
  9. 9.
    Capri M, Yani SL, Chattat R, et al. Pre-operative, high-IL-6 blood level is a risk factor of post-operative delirium onset in old patients. Front Endocrinol (Lausanne) 2014; 5: 173.CrossRefGoogle Scholar
  10. 10.
    Wan Y, Xu J, Ma D, Zeng Y, Gibelli M, Maze M. Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology 2007; 106: 436-43.CrossRefGoogle Scholar
  11. 11.
    Chen SY, Koo BN. Postoperative cognitive dysfunction: advances based on pre-clinical studies. Anesth Pain Med 2018; 13: 113-21.CrossRefGoogle Scholar
  12. 12.
    Kawasaki T, Kawasaki C, Ueki M, Hamada K, Habe K, Sata T. Dexmedetomidine suppresses proinflammatory mediator production in human whole blood in vitro. J Trauma Acute Care Surg 2013; 74: 1370-5.CrossRefGoogle Scholar
  13. 13.
    Liu Z, Wang Y, Wang Y, et al. Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway. Int Immunopharmacol 2016; 35: 210-6.CrossRefGoogle Scholar
  14. 14.
    de la Gala F, Piñeiro P, Garutti I, et al. Systemic and alveolar inflammatory response in the dependent and nondependent lung in patients undergoing lung resection surgery: a prospective observational study. Eur J Anaesthesiol 2015; 32: 872-80.Google Scholar
  15. 15.
    Sugasawa Y, Yamaguchi K, Kumakura S, et al. The effect of one-lung ventilation upon pulmonary inflammatory responses during lung resection. J Anesth 2011; 25: 170-7.CrossRefGoogle Scholar
  16. 16.
    Riker RR, Picard JT, Fraser GL. Prospective evaluation of the Sedation-Agitation Scale for adult critically ill patients. Crit Care Med 1999; 27: 1325-9.CrossRefGoogle Scholar
  17. 17.
    Ely EW, Margolin R, Francis J, et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit Care Med 2001; 29: 1370-9.CrossRefGoogle Scholar
  18. 18.
    Shaheen PE, Walsh D, Lasheen W, Davis MP, Lagman RL. Opioid equianalgesic tables: are they all equally dangerous? J Pain Symptom Manage 2009; 38: 409-17.CrossRefGoogle Scholar
  19. 19.
    Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-13.CrossRefGoogle Scholar
  20. 20.
    Agostini P, Naidu B, Cieslik H, et al. Comparison of recognition tools for postoperative pulmonary complications following thoracotomy. Physiotherapy 2011; 97: 278-83.CrossRefGoogle Scholar
  21. 21.
    Kim SY, Kim JM, Lee JH, Song BM, Koo BN. Efficacy of intraoperative dexmedetomidine infusion on emergence agitation and quality of recovery after nasal surgery. Br J Anaesth 2013; 111: 222-8.CrossRefGoogle Scholar
  22. 22.
    Li Y, Wang B, Zhang LL, et al. Dexmedetomidine combined with general anesthesia provides similar intraoperative stress response reduction when compared with a combined general and epidural anesthetic technique. Anesth Analg 2016; 122: 1202-10.CrossRefGoogle Scholar
  23. 23.
    Deiner S, Luo S, Lin HM, et al. Intraoperative infusion of dexmedetomidine for prevention of postoperative delirium and cognitive dysfunction in elderly patients undergoing major elective noncardiac surgery a randomized clinical trial. JAMA Surg 2017; 152: e171505.CrossRefGoogle Scholar
  24. 24.
    Card E, Pandharipande P, Tomes C, et al. Emergence from general anaesthesia and evolution of delirium signs in the post-anaesthesia care unit. Br J Anaesth 2015; 115: 411-7.CrossRefGoogle Scholar
  25. 25.
    Gauldie J, Richards C, Harnish D, Lansdorp P, Baumann H. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci USA 1987; 84: 7251-5.CrossRefGoogle Scholar
  26. 26.
    Sakamoto K, Arakawa H, Mita S, et al. Elevation of circulating interleukin 6 after surgery: factors influencing the serum level. Cytokine 1994; 6: 181-6.CrossRefGoogle Scholar
  27. 27.
    Lyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 2012; 32: 23-63.CrossRefGoogle Scholar
  28. 28.
    Taniguchi T, Koido Y, Aiboshi J, Yamashita T, Suzaki S, Kurokawa A. The ratio of interleukin-6 to interleukin-10 correlates with severity in patients with chest and abdominal trauma. Am J Emerg Med 1999; 17: 548-51.CrossRefGoogle Scholar
  29. 29.
    Weis F, Beiras-Fernandez A, Schelling G, et al. Stress doses of hydrocortisone in high-risk patients undergoing cardiac surgery: effects on interleukin-6 to interleukin-10 ratio and early outcome. Crit Care Med 2009; 37: 1685-90.CrossRefGoogle Scholar
  30. 30.
    Bekker A, Haile M, Kline R, et al. The effect of intraoperative infusion of dexmedetomidine on the quality of recovery after major spinal surgery. J Neurosurg Anesthesiol 2013; 25: 16-24.CrossRefGoogle Scholar
  31. 31.
    Chen S, Hua F, Lu J, et al. Effect of dexmedetomidine on myocardial ischemia-reperfusion injury. Int J Clin Exp Med 2015; 8: 21166-72.Google Scholar
  32. 32.
    Wang ZX, Huang CY, Hua YP, Huang WQ, Deng LH, Liu KX. Dexmedetomidine reduces intestinal and hepatic injury after hepatectomy with inflow occlusion under general anaesthesia: a randomized controlled trial. Br J Anaesth 2014; 112: 1055-64.CrossRefGoogle Scholar
  33. 33.
    Elshal MF, McCoy JP. Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 2006; 38: 317-23.CrossRefGoogle Scholar
  34. 34.
    Gertler R, Brown HC, Mitchell DH, Silvius EN. Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent) 2001; 14: 13-21.CrossRefGoogle Scholar
  35. 35.
    Yu D, Chai W, Sun X, Yao L. Emergence agitation in adults: risk factors in 2,000 patients. Can J Anesth 2010; 57: 843-8.CrossRefGoogle Scholar
  36. 36.
    Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 2003; 98: 428-36.CrossRefGoogle Scholar
  37. 37.
    Huupponen E, Maksimow A, Lapinlampi P, et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand 2008; 52: 289-94.CrossRefGoogle Scholar
  38. 38.
    Woiciechowsky C, Schöning B, Lanksch WR, Volk HD, Döcke WD. Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J Mol Med (Berl) 1999; 77: 769-80.CrossRefGoogle Scholar
  39. 39.
    Woiciechowsky C, Asadullah K, Nestler D, et al. Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat Med 1998; 4: 808-13.CrossRefGoogle Scholar
  40. 40.
    Lindholm EE, Aune E, Seljeflot I, Otterstad JE, Kirkebøen KA. Biomarkers of inflammation in major vascular surgery: a prospective randomised trial. Acta Anaesthesiol Scand 2015; 59: 773-87.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Pain Medicine, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea

Personalised recommendations