Advertisement

Latent class analysis stratifies mortality risk in patients developing acute kidney injury after high-risk intraabdominal general surgery: a historical cohort study

  • Minjae KimEmail author
  • Melanie M. Wall
  • Ravi P. Kiran
  • Guohua Li
Reports of Original Investigations

Abstract

Purpose

Risk stratification for postoperative acute kidney injury (AKI) evaluates a patient’s risk for developing this complication using preoperative characteristics. Nevertheless, it is unclear if these characteristics are also associated with mortality in patients who actually develop this complication, so we aimed to determine these associations.

Methods

The 2011-15 American College of Surgeons National Surgical Quality Improvement Program was used to obtain a historical, observational cohort of high-risk intraabdominal general surgery patients with AKI, which was defined as an increase in serum creatinine > 177 µmol·L−1 (2 mg·dL−1) above the preoperative value and/or the need for dialysis. Latent class analysis, a model-based clustering technique, classified patients based on preoperative comorbidities and risk factors. The associations between the latent classes and the time course of AKI development and mortality after AKI were assessed with the Kruskall-Wallis test and Cox models.

Results

A seven-class model was fit on 3,939 observations (derivation cohort). Two patterns for the time course of AKI diagnosis emerged: an “early” group (median [interquartile range] day of diagnosis 3 [1-10]) and a “late” group (day 9 [3-16]). Three patterns of survival after AKI diagnosis were identified (groups A-C). Compared with the group with the lowest mortality risk (group A), the hazard ratios (95% confidence intervals) for 30-day mortality were 1.79 [1.55 to 2.08] for group B and 3.55 [3.06 to 4.13] for group C. These differences in relative hazard were similar after adjusting for the postoperative day of AKI diagnosis and surgical procedure category.

Conclusions

Among patients with AKI after high-risk general surgery, the preoperative comorbid state is associated with the time course of and survival after AKI. This knowledge can stratify mortality risk in patients who develop postoperative AKI.

L’analyse de classe latente stratifie le risque de mortalité chez les patients développant une insuffisance rénale aiguë après une chirurgie générale intra-abdominale à risque élevé : une étude de cohorte historique

Résumé

Objectif

La stratification du risque d’insuffisance rénale aiguë (IRA) postopératoire évalue le risque de survenue de cette complication en fonction des caractéristiques préopératoires des patients. Néanmoins, on ignore si ces caractéristiques sont également associées à la mortalité chez les patients développant cette complication. Nous avons cherché à préciser ces associations.

Méthodes

Le programme national d’amélioration de la qualité de la chirurgie 2011-15 de l’American College of Surgeons (ACS NSQIP) a été utilisé pour obtenir une cohorte observationnelle historique de patients de chirurgie générale intra-abdominale à risque élevé de IRA qui était défini par une augmentation de la créatinine sérique > 177 µmol·L−1 (2 mg·dL−1) au-dessus de sa valeur préopératoire et/ou le besoin de dialyse. Une analyse de classe latente (une technique de regroupements basée sur un modèle) a classé les patients en fonction des comorbidités préopératoires et des facteurs de risque. Les associations entre les classes latentes et l’évolution de l’IRA et la mortalité après IRA ont été évaluées au moyen du test de Kruskall-Wallis et des modèles de Cox.

Résultats

Un modèle à sept classes a été adapté à partir de 3 939 observations (cohorte de dérivation). Concernant le diagnostic des IRA, deux regroupements ont vu le jour : un groupe « précoce » (établissement du diagnostic [plage interquartile] à 3 [1 à 10] jours) et un groupe « tardif » (9 [3 à 16] jours). Trois types de survie après le diagnostic de IRA (groupes A à C) ont été identifiés. Comparativement au groupe ayant le risque de mortalité le plus faible (Groupe A), les rapports de risques (intervalles de confiance à 95%) pour la mortalité à 30 jours étaient de 1,79 [1,55 à 2,08] pour le Groupe B et de 3,55 [3,06 à 4,13] pour le Groupe C. Ces différences de risque relatif sont restées comparables après l’ajustement pour le jour postopératoire du diagnostic de IRA et la catégorie d’intervention chirurgicale.

Conclusions

Parmi les patients présentant des IRA après une chirurgie générale à haut risque, l’état morbide préopératoire a été associé à l’évolution des IRA et à la survie chez les patients qui développent une IRA. Ces informations peuvent permettre de stratifier le risque de mortalité chez les patients développant une IRA postopératoire.

Notes

Acknowledgements

This publication was supported by the National Centre for Advancing Translational Sciences, National Institutes of Health through Grant Number KL2TR001874 (MK). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Hilary P. Grocott, Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

Minjae Kim contributed substantially to all aspects of this manuscript, including conception and design, acquisition, analysis, and interpretation of data and drafting the article. Melanie M. Wall, Ravi P. Kiran, and Guohua Li contributed substantially to the analysis and interpretation of data, and drafting the article.

Supplementary material

12630_2018_1221_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 39 kb)
12630_2018_1221_MOESM2_ESM.docx (255 kb)
Supplementary material 2 (DOCX 254 kb)
12630_2018_1221_MOESM3_ESM.docx (352 kb)
Supplementary material 3 (DOCX 352 kb)
12630_2018_1221_MOESM4_ESM.pdf (15 kb)
Supplementary material 4 (PDF 15 kb)
12630_2018_1221_MOESM5_ESM.pdf (14 kb)
Supplementary material 5 (PDF 14 kb)
12630_2018_1221_MOESM6_ESM.pdf (15 kb)
Supplementary material 6 (PDF 14 kb)
12630_2018_1221_MOESM7_ESM.pdf (58 kb)
Supplementary material 7 (PDF 57 kb)
12630_2018_1221_MOESM8_ESM.pdf (15 kb)
Supplementary material 8 (PDF 15 kb)

References

  1. 1.
    Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, et al. Cost and mortality associated with postoperative acute kidney injury. Ann Surg 2015; 261: 1207-14.CrossRefGoogle Scholar
  2. 2.
    Bihorac A, Yavas S, Subbiah S, et al. Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann Surg 2009; 249: 851-8.CrossRefGoogle Scholar
  3. 3.
    Collister D, Pannu N, Ye F, et al. Health care costs associated with AKI. Clin J Am Soc Nephrol 2017; 12: 1733-43.CrossRefGoogle Scholar
  4. 4.
    Kim M, Brady JE, Li G. Variations in the risk of acute kidney injury across intraabdominal surgery procedures. Anesth Analg 2014; 119: 1121-32.CrossRefGoogle Scholar
  5. 5.
    Meersch M, Schmidt C, Zarbock A. Perioperative acute kidney injury: an under-recognized problem. Anesth Analg 2017; 125: 1223-32.CrossRefGoogle Scholar
  6. 6.
    Kheterpal S, Tremper KK, Heung M, et al. Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. Anesthesiology 2009; 110: 505-15.CrossRefGoogle Scholar
  7. 7.
    Kheterpal S, Tremper KK, Englesbe MJ, et al. Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology 2007; 107: 892-902.CrossRefGoogle Scholar
  8. 8.
    Kim M, Li G. Two-way interaction effects of perioperative complications on 30-day mortality in general surgery. World J Surg 2018; 42: 2-11.CrossRefGoogle Scholar
  9. 9.
    Uebersax JS. LCA Frequently Asked Questions (FAQ). Last updated July 2009. Available from URL: http://www.john-uebersax.com/stat/faq.htm (accessed July 2018).
  10. 10.
    Kim M, Wall MM, Li G. Applying latent class analysis to risk stratification for perioperative mortality in patients undergoing intraabdominal general surgery. Anesth Analg 2016; 123: 193-205.CrossRefGoogle Scholar
  11. 11.
    Kim M, Wall MM, Li G. Risk stratification for major postoperative complications in patients undergoing intra-abdominal general surgery using latent class analysis. Anesth Analg 2018; 126: 848-57.CrossRefGoogle Scholar
  12. 12.
    Fink AS, DA Campbell J, Mentzer RM Jr, et al. The National Surgical Quality Improvement Program in non-veterans administration hospitals: initial demonstration of feasibility. Ann Surg 2002; 236: 344-53.CrossRefGoogle Scholar
  13. 13.
    World Health Organization. Obesity : preventing and managing the global epidemic : report of a WHO consultation. Geneva: World Health Organization; 2000. Available from URL: http://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/ (accessed July 2018).
  14. 14.
    Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604-12.CrossRefGoogle Scholar
  15. 15.
    National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39(2 Suppl 1): S1-266.Google Scholar
  16. 16.
    Rabe-Hesketh S, Skrondal A. Classical latent variable models for medical research. Stat Methods Med Res 2008; 17: 5-32.CrossRefGoogle Scholar
  17. 17.
    Bartholomew D, Knott M, Moustaki I. Latent Variable Models and Factor Analysis : a Unified Approach – Third Edition. Chichester, West Sussex: Wiley; 2011.CrossRefGoogle Scholar
  18. 18.
    Schwarz G. Estimating the dimension of a model. Ann Statist 1978; 6: 461-4.CrossRefGoogle Scholar
  19. 19.
    Nylund KL, Asparouhov T, Muthén BO. Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Structural Equation Modeling 2007; 14: 535-69.CrossRefGoogle Scholar
  20. 20.
    Enders CK, Bandalos DL. The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling 2001; 8: 430-57.CrossRefGoogle Scholar
  21. 21.
    Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457-81.CrossRefGoogle Scholar
  22. 22.
    Peto R, Peto J. Asymptotically efficient rank invariant test procedures. J R Stat Soc A 1972; 135: 185-207.CrossRefGoogle Scholar
  23. 23.
    Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt 2014; 34: 502-8.CrossRefGoogle Scholar
  24. 24.
    Kim M, Li G. Postoperative complications affecting survival after cardiac arrest in general surgery patients. Anesth Analg 2018; 126: 858-64.CrossRefGoogle Scholar
  25. 25.
    Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2014; 2: 611-20.CrossRefGoogle Scholar
  26. 26.
    Howard R, Rattray M, Prosperi M, Custovic A. Distinguishing asthma phenotypes using machine learning approaches. Curr Allergy Asthma Rep 2015; 15: 38.CrossRefGoogle Scholar
  27. 27.
    Hahn EE, Gould MK, Munoz-Plaza CE, Lee JS, Parry C, Shen E. Understanding comorbidity profiles and their effect on treatment and survival in patients with colorectal cancer. J Natl Compr Canc Netw 2018; 16: 23-34.CrossRefGoogle Scholar
  28. 28.
    Futier E, Lefrant JY, Guinot PG, et al. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA 2017; 318: 1346-57.CrossRefGoogle Scholar
  29. 29.
    Wu X, Jiang Z, Ying J, Han Y, Chen Z. Optimal blood pressure decreases acute kidney injury after gastrointestinal surgery in elderly hypertensive patients: a randomized study: optimal blood pressure reduces acute kidney injury. J Clin Anesth 2017; 43: 77-83.CrossRefGoogle Scholar
  30. 30.
    Mizota T, Yamamoto Y, Hamada M, Matsukawa S, Shimizu S, Kai S. Intraoperative oliguria predicts acute kidney injury after major abdominal surgery. Br J Anaesth 2017; 119: 1127-34.CrossRefGoogle Scholar
  31. 31.
    National Kidney Foundation. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2012; 2: 19-36.CrossRefGoogle Scholar
  32. 32.
    Hill HA, Kleinbaum DG. Bias in observational studies. Encyclopedia of Biostatistics 2005; 1.Google Scholar
  33. 33.
    Dimick JB, Osborne NH, Hall BL, Ko CY, Birkmeyer JD. Risk adjustment for comparing hospital quality with surgery: how many variables are needed? J Am Coll Surg 2010; 210: 503-8.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2018

Authors and Affiliations

  1. 1.Department of AnesthesiologyColumbia University Medical CenterNew YorkUSA
  2. 2.Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkUSA
  3. 3.Department of Biostatistics, Mailman School of Public HealthColumbia UniversityNew YorkUSA
  4. 4.Division of Colorectal Surgery, Department of SurgeryColumbia University Medical CenterNew YorkUSA

Personalised recommendations