A rapid response system reduces the incidence of in-hospital postoperative cardiopulmonary arrest: a retrospective study

  • Tak Kyu Oh
  • Sooyeon Kim
  • Dong Seon Lee
  • Hyunju Min
  • Yun Young Choi
  • Eun Young Lee
  • Mi-Ae Yun
  • Yeon Joo Lee
  • Park Sang Hon
  • Kyuseok Kim
  • Sang-Hwan Do
  • Jung-Won Hwang
  • In-Ae SongEmail author
Reports of Original Investigations



Rapid response systems (RRSs) have been introduced into hospitals to help reduce the incidence of sudden cardiopulmonary arrest (CPA). This study evaluated whether an RRS reduces the incidence of in-hospital postoperative CPA.


This retrospective before-and-after analysis evaluated data collected from electronic medical records during a pre-intervention (January 2008 to September 2012) and post-intervention (implementation of an RRS) interval (October 2012 to December 2016) at a single tertiary care institution. The primary outcome was a change in the rate of CPA in surgical patients recovering in a general ward. A Poisson regression analysis adjusted for the Charlson Comorbidity Index (CCI) was used to compare CPA rates during these two intervals.


Of the 207,054 surgical procedures performed during the study period, mean (95% confidence interval [CI]) CPA events per 10,000 cases of 7.46 (5.72 to 9.19) and 5.19 (3.85 to 6.52) were recorded before and after RRS intervention, respectively (relative risk [RR], 0.73; 97.5% CI, 0.48 to 1.13; P = 0.103). Cardiopulmonary arrest incidence was reduced during RRS operational hours of 07:00–22:00 Monday-Friday and 07:00–12:00 Saturday (RR, 0.56; 97.5% CI, 0.31 to 1.02; P = 0.027) but was unchanged when the RRS was not operational (RR, 0.86; 97.5% CI, 0.52 to 1.40; P = 0.534). The CCI-adjusted RR of CPA after RRS implementation was lower than before RRS intervention (0.63; 97.5% CI, 0.41 to 0.98; P = 0.018) but this reduction was still only apparent during RRS operational hours (RR, 0.48; 97.5% CI, 0.27 to 0.89; P = 0.008 vs RR, 0.85; 97.5% CI, 0.45 to 1.58; P = 0.55).


Implementation of an RRS reduced the incidence of postoperative CPA in patients recovering in a general ward. Furthermore, this reduction was observed only during RRS operational hours.

Un système de réponse rapide diminue l’incidence des arrêts cardiopulmonaires postopératoires en milieu hospitalier : une étude rétrospective



Les systèmes de réponse rapide (SRR) ont été introduits dans les hôpitaux pour contribuer à diminuer l’incidence des arrêts cardiorespiratoires (ACR) subits. Cette étude a évalué si un SRR réduit l’incidence des ACR postopératoires à l’hôpital.


Cette analyse rétrospective d’impact a évalué les données collectées à partir des dossiers médicaux électroniques au cours d’une période pré-intervention (janvier 2008 à septembre 2012) et d’une période post-intervention (mise en place d’un RRS : octobre 2012 à décembre 2016) dans un seul établissement de soins tertiaires. Le critère d’évaluation principal était la modification du taux d’ACR chez les patients chirurgicaux en post-opératoire dans une unité de chirurgie générale. Une analyse de régression de Poisson ajustée pour l’indice de comorbidités de Charlson (CCI) a été utilisée pour comparer les taux d’ACR pendant ces deux périodes.


Sur les 207 054 procédures chirurgicales pratiquées au cours de l’étude, le nombre moyen d’événements d’ACR (intervalle de confiance [IC] à 95 %]) par 10 000 cas enregistrés, respectivement avant et après la mise en place du SRR, était de 7,46 (5,72 à 9,19) et 5,19 (3,85 à 6,52) avec un risque relatif [RR] : 0,73; IC à 97,5 % : 0,48 à 1,13; P = 0,103). L’incidence des arrêts cardiorespiratoires a diminué pendant les heures d’activité du SRR de 7 h à 22 h du lundi au vendredi et de 7 h à midi le samedi (RR : 0,56; IC à 97,5 % : 0,31 à 1,02; P = 0,027), mais elle est restée inchangée quand le SRR n’était pas opérationnel (RR : 0,86; IC à 97,5 % : 0,52 à 1,40; P = 0,534). Le RR d’ACR ajusté pour le CCI après la mise en place du SRR a été inférieur à ce qu’il était avant l’intervention (0,63; IC à 97,5 % : 0,41 à 0,98; P = 0,018), mais cette réduction n’était détectable que pendant les heures d’activité du SRR (RR : 0,48; IC à 97,5 % : 0,27 à 0,89; P = 0,008 contre RR : 0,85; IC à 97,5 % : 0,45 à 1,58; P = 0,55).


La mise en œuvre d’un SRR a diminué l’incidence des ACR postopératoires chez les patients récupérant dans un service de chirurgie générale. En outre, cette réduction n’a été observée que pendant les heures d’activité du SRR.



We sincerely thank the members of the RRT (Jong Sun Park, Dong Jung Kim, You-hwan Jo, Se-joong Kim, Ji-Won Kim, Yeonyee Yoon, Jin-Won Kim, Jung-Won Suh, Joonghee Kim, Jae-Hyuk Lee, Young-Jae Cho, and RRT nurse Da-Yun Lee), the intensivists, all nurses working in the ward and ICU, and CPR team. We also acknowledge the members of the medical informatics team, which prepared the screening system (BESTboard®) used by the SNUBH Medical Alert First Responder team (SAFER) at Seoul National University Bundang Hospital.

Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Steven Backman, Associate Editor, Canadian Journal of Anesthesia.

Author contributions

Tak Kyu Oh contributed to the study design and drafted the first version of the manuscript. Dong Seon Lee, Hyunju Min, Yun Young Choi, Eun Young Lee, Mi-Ae Yun, Yeon Joo Lee, Sang Hon Park, and Kyuseok Kim contributed to the data acquisition. Sooyeon Kim analyzed the data. Sang-Hwan Do and Jung-Won Hwang critically revised the manuscript. In-Ae Song contributed to the study design and provided critical revision of the manuscript. All authors approved the final version of the manuscript

Financial disclosures



  1. 1.
    Kim HC, Yoo JW, Lim SY, et al. Mortality after in-hospital cardiopulmonary resuscitation: multicenter analysis in Korea. J Crit Care 2013; 28: 942-6.CrossRefGoogle Scholar
  2. 2.
    Franklin C, Mathew J. Developing strategies to prevent inhospital cardiac arrest: analyzing responses of physicians and nurses in the hours before the event. Crit Care Med 1994; 22: 244-7.CrossRefGoogle Scholar
  3. 3.
    Schein RM, Hazday N, Pena M, Ruben BH, Sprung CL. Clinical antecedents to in-hospital cardiopulmonary arrest. Chest 1990; 98: 1388-92.CrossRefGoogle Scholar
  4. 4.
    Buist MD, Moore GE, Bernard SA, Waxman BP, Anderson JN, Nguyen TV. Effects of a medical emergency team on reduction of incidence of and mortality from unexpected cardiac arrests in hospital: preliminary study. BMJ 2002; 324: 387-90.CrossRefGoogle Scholar
  5. 5.
    Calzavacca P, Licari E, Tee A, et al. The impact of rapid response system on delayed emergency team activation patient characteristics and outcomes–a follow-up study. Resuscitation 2010; 81: 31-5.CrossRefGoogle Scholar
  6. 6.
    Wendon J, Hodgson C, Bellomo R. Rapid response teams improve outcomes: we are not sure. Intensive Care Med 2016; 42: 599-601.CrossRefGoogle Scholar
  7. 7.
    Chen J, Ou L, Flabouris A, Hillman K, Bellomo R, Parr M. Impact of a standardized rapid response system on outcomes in a large healthcare jurisdiction. Resuscitation 2016; 107: 47-56.CrossRefGoogle Scholar
  8. 8.
    Landoni G, Pisano A, Lomivorotov V, et al. Randomized evidence for reduction of perioperative mortality: an updated consensus process. J Cardiothorac Vasc Anesth 2017; 31: 719-30.CrossRefGoogle Scholar
  9. 9.
    Bellomo R, Goldsmith D, Uchino S, et al. Prospective controlled trial of effect of medical emergency team on postoperative morbidity and mortality rates. Crit Care Med 2004; 32: 916-21.CrossRefGoogle Scholar
  10. 10.
    Kim Y, Lee DS, Min H, et al. Effectiveness analysis of a part-time rapid response system during operation versus nonoperation. Crit Care Med 2017; 45: e592-9.CrossRefGoogle Scholar
  11. 11.
    DeVita MA, Smith GB, Adam SK, et al. “Identifying the hospitalised patient in crisis”–a consensus conference on the afferent limb of rapid response systems. Resuscitation 2010; 81: 375-82.CrossRefGoogle Scholar
  12. 12.
    Yoo S, Hwang H, Jheon S. Hospital information systems: experience at the fully digitized Seoul National University Bundang Hospital. J Thorac Dis 2016; 8: S637-41.CrossRefGoogle Scholar
  13. 13.
    D’Hoore W, Sicotte C, Tilquin C. Risk adjustment in outcome assessment: the Charlson comorbidity index. Methods Inf Med 1993; 32: 382-7.CrossRefGoogle Scholar
  14. 14.
    Trinkle RM, Flabouris A. Documenting rapid response system afferent limb failure and associated patient outcomes. Resuscitation 2011; 82: 810-4.CrossRefGoogle Scholar
  15. 15.
    Brennan MF. Postoperative complication reporting: more than mortality and morbidity. Ann Surg 2013; 258: 8-9.CrossRefGoogle Scholar
  16. 16.
    Arozullah AM, Henderson WG, Khuri SF, Daley J. Postoperative mortality and pulmonary complication rankings: how well do they correlate at the hospital level? Med Care 2003; 41: 979-91.CrossRefGoogle Scholar
  17. 17.
    Sessler DI, Meyhoff CS, Zimmerman NM, et al. Period-dependent associations between hypotension during and for four days after noncardiac surgery and a composite of myocardial infarction and death: a substudy of the POISE-2 trial. Anesthesiology 2018; 128: 317-27.CrossRefGoogle Scholar
  18. 18.
    Pignaton W, Braz JR, Kusano PS, et al. Perioperative and anesthesia-related mortality: an 8-year observational survey from a tertiary teaching hospital. Medicine (Baltimore) 2016; 95: e2208.CrossRefGoogle Scholar
  19. 19.
    DeVita MA, Hillman K, Bellomo R, et al. Textbook of Rapid Response Systems: Concept and Implementation. Springer; 2017.Google Scholar
  20. 20.
    Jo S, Lee JB, Jin YH, et al. Modified early warning score with rapid lactate level in critically ill medical patients: the ViEWS-L score. Emerg Med J 2012; 30: 123-9.CrossRefGoogle Scholar
  21. 21.
    Ting PC, Chou AH, Yang MW, Ho AC, Chang CJ, Chang SC. Postoperative reintubation after planned extubation: a review of 137,866 general anesthetics from 2005 to 2007 in a medical center of Taiwan. Acta Anaesthesiol Taiwan 2010; 48: 167-71.CrossRefGoogle Scholar
  22. 22.
    Cardona-Morrell M, Prgomet M, Turner R, Nicholson M, Hillman K. Effectiveness of continuous or intermittent vital signs monitoring in preventing adverse events on general wards: a systematic review and meta-analysis. Int J Clin Pract 2016; 70: 806-24.CrossRefGoogle Scholar
  23. 23.
    Ludikhuize J, Borgert M, Binnekade J, Subbe C, Dongelmans D, Goossens A. Standardized measurement of the modified early warning score results in enhanced implementation of a rapid response system: a quasi-experimental study. Resuscitation 2014; 85: 676-82.CrossRefGoogle Scholar
  24. 24.
    Bravo Vergel Y, Sculpher M. Quality-adjusted life years. Pract Neurol 2008; 8: 175-82.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2018

Authors and Affiliations

  • Tak Kyu Oh
    • 1
    • 2
  • Sooyeon Kim
    • 3
  • Dong Seon Lee
    • 1
  • Hyunju Min
    • 1
  • Yun Young Choi
    • 1
  • Eun Young Lee
    • 1
  • Mi-Ae Yun
    • 1
  • Yeon Joo Lee
    • 5
  • Park Sang Hon
    • 6
  • Kyuseok Kim
    • 1
    • 4
  • Sang-Hwan Do
    • 1
    • 2
  • Jung-Won Hwang
    • 1
    • 2
  • In-Ae Song
    • 1
    • 2
    Email author
  1. 1.Interdepartment of Critical Care MedicineSeoul National University Bundang HospitalSeongnamRepublic of Korea
  2. 2.Department of Anesthesiology and Pain MedicineSeoul National University Bundang HospitalSeongnamRepublic of Korea
  3. 3.Medical Research Collaborating CenterSeoul National University Bundang HospitalSeongnamRepublic of Korea
  4. 4.Department of Emergency MedicineSeoul National University Bundang HospitalSeongnamRepublic of Korea
  5. 5.Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineSeoul National University Bundang HospitalSeongnamRepublic of Korea
  6. 6.Division of Intensive Care MedicineSheikh Khalifa Specialty HospitalRas Al KhaimahUnited Arab Emirates

Personalised recommendations