Advertisement

The impact of delayed critical care outreach team activation on in-hospital mortality and other patient outcomes: a historical cohort study

  • Bourke W. Tillmann
  • Michelle L. Klingel
  • Shelley L. McLeod
  • Scott Anderson
  • Wael Haddara
  • Neil G. Parry
Reports of Original Investigations

Abstract

Purpose

Early warning scores (EWS) and critical care outreach teams (CCOT) have been developed to respond to decompensating patients. Nevertheless, controversy exists around their effectiveness. The primary objective of this study was to determine if a delay of ≥ 60 min between when a patient was identified as meeting EWS criteria and the CCOT was activated impacted in-hospital mortality.

Methods

This was a historical cohort study evaluating all new CCOT activations over a four-year study period (1 June 2007 to 31 August 2011) for inpatients ≥ 18 yr of age at two academic tertiary care hospitals in London, Ontario, Canada. Multivariable logistic regression accounting for repeated measures was used to determine the effect of delayed CCOT activation on in-hospital mortality (primary outcome). Differences in outcomes between medical and surgical patients were also examined.

Results

There were 3,133 CCOT activations for 1,684 (53.8%) medical patients and 1,449 (46.2%) surgical patients during the study period. The CCOT was activated < 60 min of a patient meeting EWS criteria in 2,160 (68.9%) cases and ≥ 60 min in 973 (31.1%) cases. Patients with ≥ 60 min delay were more likely be admitted to the intensive care unit (odds ratio [OR], 1.22; 95% confidence interval [CI], 1.07 to 1.47) and to suffer in-hospital mortality (OR, 1.30; 95% CI, 1.08 to 1.56). Irrespective of delay, surgical patients were less likely to experience in-hospital mortality than medical patients (OR, 0.46; 95% CI, 0.39 to 0.55).

Conclusion

Including the rates of delay in CCOT activation and the admitting service could be an additional step in exploring the conflicting results seen in the current literature assessing the impact of CCOT on patient outcomes.

Impact du retard d’activation des équipes d’intervention en soins critiques auprès des patients sur la mortalité à l’hôpital et sur les autres critères d’évaluation des patients : une étude de cohorte historique

Résumé

Objet

Des scores d’alerte précoce (SAP) et des équipes d’intervention rapide (ou EUM - équipes d’urgence médicale) ont été mis en place pour répondre aux besoins de patients présentant une décompensation de leur état de santé. Leur efficacité est néanmoins controversée. L’objectif principal de cette étude était de déterminer si un délai ≥ 60 min entre le moment où un patient est identifié comme répondant aux critères du SAP et l’activation de l’EUM avait des répercussions sur la mortalité à l’hôpital.

Méthodes

Il s’est agi d’une étude de cohorte historique évaluant toutes les nouvelles activations de l’EUM sur une période de 4 ans (du 1er juin 2007 au 31 août 2011) pour des patients hospitalisés âgés de 18 ans et plus dans deux hôpitaux universitaires de soins tertiaires, à London (Ontario, Canada). Une analyse de régression logistique multifactorielle pour des mesures répétées a permis de déterminer l’effet du retard d’activation de l’EUM sur la mortalité à l’hôpital (critère d’évaluation principal). Les différences d’évolutions entre les patients médicaux et chirurgicaux ont aussi été examinées.

Résultats

Il y a eu 3 133 activations des EUM pour 1 684 patients médicaux (53,8 %) et 1 449 patients chirurgicaux (46,2 %) au cours de la période d’étude. Par rapport à l’atteinte des critères de SAP, l’EUM a été activée en moins de 60 minutes dans 2 160 (68,9 %) des cas et en ≥ 60 minutes dans 973 (31,1 %) cas. Les patients pour lesquels le délai était ≥ 60 minutes ont été plus susceptibles d’être admis en unité de soins critiques (rapport de cotes [OR], 1,22; intervalle de confiance [IC] à 95 % : 1,07 à 1,47) et de décéder à l’hôpital (OR, 1,30; IC à 95 % : 1,08 à 1,56). Indépendamment du délai, les patients chirurgicaux ont été moins susceptibles de décéder à l’hôpital que les patients médicaux (OR, 0,46; IC à 95 % : 0,39 à 0,55).

Conclusion

L’inclusion des taux de délai d’activation des EUM et du service d’admission pourrait représenter une étape supplémentaire dans l’exploration des résultats contradictoires relevés dans les publications actuelles sur l’impact des EUM sur l’évolution des patients.

Notes

Acknowledgement

The authors thank all the members of the CCOT at the London Health Sciences Centre for their role in conducting this study.

Competing interests and funding

The authors declare that there are no competing interests.

Editorial responsibility

This submission was handled by Dr. Hilary P. Grocott, Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

Bourke W. Tillmann contributed to the conception and design of the study, assisted with ethics approval, analyzed and interpreted the data, and was the primary author of the manuscript. Michelle L. Klingel contributed to the design of the study, obtained ethics approval, analyzed and interpreted the data, and was involved in drafting the manuscript. Shelley L. McLeod aided in analysis, interpretation of the data, and editing of the manuscript. Scott Anderson contributed to the design and creation of the study. Wael Haddara contributed to the creation and acquisition of the data. Neil G. Parry contributed to the conception and design of the study and was a major contributor to writing the manuscript. All authors approved the final manuscript.

Funding

No financial support was provided for this project. The study protocol was approved by the Health Sciences Research Ethics Board at The University of Western Ontario, file number 103433.

Supplementary material

12630_2018_1180_MOESM1_ESM.pdf (80 kb)
Supplementary material 1 (PDF 80 kb)
12630_2018_1180_MOESM2_ESM.pdf (84 kb)
Supplementary material 2 (PDF 83 kb)

References

  1. 1.
    Johnstone CC, Rattray J, Myers L. Physiological risk factors, early warning scoring systems and organizational changes. Nurs Crit Care 2007; 12: 219-24.CrossRefGoogle Scholar
  2. 2.
    McArthur-Rouse F. Critical care outreach services and early warning scoring systems: a review of the literature. J Adv Nurs 2001; 36: 696-704.CrossRefGoogle Scholar
  3. 3.
    Roney JK, Whitley BE, Maples JC, Futrell LS, Stunkard KA, Long JD. Modified early warning scoring (MEWS): evaluating the evidence for tool inclusion of sepsis screening criteria and impact on mortality and failure to rescue. J Clin Nurs 2015; 24: 3343-54.CrossRefGoogle Scholar
  4. 4.
    Smith ME, Chiovaro JC, O’Neil M, et al. Early warning system scores for clinical deterioration in hospitalized patients: a systematic review. Ann Am Thorac Soc 2014; 11: 1454-65.CrossRefGoogle Scholar
  5. 5.
    Subbe CP, Davies RG, Williams E, Rutherford P, Gemmell L. Effect of introducing the Modified Early Warning score on clinical outcomes, cardio-pulmonary arrests and intensive care utilisation in acute medical admissions. Anaesthesia 2003; 58: 797-802.CrossRefGoogle Scholar
  6. 6.
    Patel MS, Jones MA, Jiggins M, Williams SC. Does the use of a “track and trigger” warning system reduce mortality in trauma patients? Injury 2011; 42: 1455-9.CrossRefGoogle Scholar
  7. 7.
    Bailey TC, Chen Y, Mao Y, et al. A trial of a real-time alert for clinical deterioration in patients hospitalized on general medical wards. J Hosp Med 2013; 8: 236-42.CrossRefGoogle Scholar
  8. 8.
    Hillman K, Chen J, Cretikos M, et al. Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial. Lancet 2005; 365: 2091-7.CrossRefGoogle Scholar
  9. 9.
    Karpman C, Keegan MT, Jensen JB, Bauer PR, Brown DR, Afessa B. The impact of rapid response team on outcome of patients transferred from the ward to the ICU: a single-center study. Crit Care Med 2013; 41: 2284-91.CrossRefGoogle Scholar
  10. 10.
    Hamilton F, Arnold D, Baird A, Albur M, Whiting P. Early warning scores do not accurately predict mortality in sepsis: a meta-analysis and systematic review of the literature. J Infect 2018; 76: 241-8.CrossRefGoogle Scholar
  11. 11.
    Moon A, Cosgrove JF, Lea D, Fairs A, Cressey DM. An eight year audit before and after the introduction of modified early warning score (MEWS) charts, of patients admitted to a tertiary referral intensive care unit after CPR. Resuscitation 2011; 82: 150-4.CrossRefGoogle Scholar
  12. 12.
    Green AL, Williams A. An evaluation of an early warning clinical marker referral tool. Intensive Crit Care Nurs 2006; 22: 274-82.CrossRefGoogle Scholar
  13. 13.
    Bristow PJ, Hillman KM, Chey T, et al. Rates of in-hospital arrests, deaths and intensive care admissions: the effect of a medical emergency team. Med J Aust 2000; 173: 236-40.PubMedGoogle Scholar
  14. 14.
    Buist MD, Moore GE, Bernard SA, Waxman BP, Anderson JN, Nguyen TV. Effects of a medical emergency team on reduction of incidence of and mortality from unexpected cardiac arrests in hospital: preliminary study. BMJ 2002; 324: 387-90.CrossRefGoogle Scholar
  15. 15.
    Ludikhuize J, Brunsveld-Reinders AH, Dijkgraaf MG, et al. Outcomes associated with the nationwide introduction of rapid response systems in the Netherlands. Crit Care Med 2015; 43: 2544-51.CrossRefGoogle Scholar
  16. 16.
    Jones D, Egi M, Bellomo R, Goldsmith D. Effect of the medical emergency team on long-term mortality following major surgery. Crit Care 2007; 11: R12.CrossRefGoogle Scholar
  17. 17.
    Subbe CP, Williams E, Fligelstone L, Gemmell L. Does earlier detection of critically ill patients on surgical wards lead to better outcomes? Ann R Coll Surg Engl 2005; 87: 226-32.CrossRefGoogle Scholar
  18. 18.
    Donohue LA, Endacott R. Track, trigger and teamwork: communication of deterioration in acute medical and surgical wards. Intensive Crit Care Nurs 2010; 26: 10-7.CrossRefGoogle Scholar
  19. 19.
    Barwise A, Thongprayoon C, Gajic O, Jensen J, Herasevich V, Pickering BW. Delayed rapid response team activation is associated with increased hospital mortality, morbidity, and length of stay in a tertiary care institution. Crit Care Med 2016; 44: 54-63.CrossRefGoogle Scholar
  20. 20.
    Chen J, Bellomo R, Flabouris A, Hillman K, Assareh H, Ou L. Delayed emergency team calls and associated hospital mortality: a multicenter study. Crit Care Med 2015; 43: 2059-65.CrossRefGoogle Scholar
  21. 21.
    Boniatti MM, Azzolini N, Viana MV, et al. Delayed medical emergency team calls and associated outcomes. Crit Care Med 2014; 42: 26-30.CrossRefGoogle Scholar
  22. 22.
    Moroseos T, Bidwell K, Rui L, et al. Rapid response team implementation on a burn surgery/acute care ward. J Burn Care Res 2014; 35: 21-7.CrossRefGoogle Scholar
  23. 23.
    Jones D, Opdam H, Egi M, et al. Long-term effect of a Medical emergency team on mortality in a teaching hospital. Resuscitation 2007; 74: 235-41.CrossRefGoogle Scholar
  24. 24.
    Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34: 1589-96.CrossRefGoogle Scholar
  25. 25.
    Dummett BA, Adams C, Scruth E, Liu V, Guo M, Escobar GJ. Incorporating an early detection system into routine clinical practice in two community hospitals. J Hosp Med 2016; 11(Suppl 1): S25-31.CrossRefGoogle Scholar
  26. 26.
    Mohan D, Farris C, Fischhoff B, et al. Efficacy of educational video game versus traditional educational apps at improving physician decision making in trauma triage: randomized controlled trial. BMJ 2017; 359: j5416.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2018

Authors and Affiliations

  • Bourke W. Tillmann
    • 1
    • 9
  • Michelle L. Klingel
    • 2
  • Shelley L. McLeod
    • 3
  • Scott Anderson
    • 4
    • 5
    • 6
  • Wael Haddara
    • 6
    • 7
  • Neil G. Parry
    • 5
    • 6
    • 8
  1. 1.Department of Critical Care MedicineSunnybrook Health Sciences CentreTorontoCanada
  2. 2.Translational Medicine, The Hospital for Sick ChildrenTorontoCanada
  3. 3.Department of Family and Community Medicine, Schwartz/Reisman Emergency Medicine InstituteUniversity of TorontoTorontoCanada
  4. 4.Division of Emergency Medicine, Department of Medicine, Schulich School of Medicine and DentistryWestern UniversityLondonCanada
  5. 5.Trauma Program, London Health Sciences Centre, Victoria HospitalWestern UniversityLondonCanada
  6. 6.Division of Critical Care Medicine, Department of Medicine, Schulich School of Medicine and DentistryWestern UniversityLondonCanada
  7. 7.Division of Endocrinology & Metabolism, Department of Medicine, Schulich School of Medicine and DentistryWestern UniversityLondonCanada
  8. 8.Division of General Surgery, Department of Surgery, Schulich School of Medicine and DentistryWestern UniversityLondonCanada
  9. 9.Sunnybrook Health Sciences CentreTorontoCanada

Personalised recommendations