Advertisement

Safety margin for needle placement during lumbar plexus block: An anatomical study using magnetic resonance imaging

  • Seokha Yoo
  • Sheung-Nyoung Choi
  • Sun-Kyung Park
  • Won Ho Kim
  • Young-Jin Lim
  • Jin-Tae KimEmail author
Reports of Original Investigations

Abstract

Purpose

We aimed to provide anatomic characteristics of the lumbar plexus and a safety margin for needle placement during lumbar plexus block in adults.

Methods

Lumbar spine magnetic resonance images from 377 adults were reviewed. We determined the depth of the lumbar plexus from the needle insertion point for the modified traditional and Capdevila’s approaches at the L4 and L5 levels. The relationship of age, height, and body weight with lumbar plexus depth, and the presence of the kidney on the transverse plane at the L4 level were assessed.

Results

The lumbar plexus was deeper at the L5 level than at the L4 level for both approaches (mean difference 3.2 mm [95% confidence interval (CI), 2.4 to 4.0] for the modified traditional approach; mean difference 4.4 mm [95% CI, 3.7 to 5.2] for Capdevila’s approach). Eighty-six (22.8%) patients had an L4 transverse process shorter than 40 mm, which implies that the needle may not contact the L4 transverse process with the modified traditional approach. The mean (standard deviation) of safety margins for needle insertion, defined as the distance from the posterior aspect of the L4 transverse process to the anterior margin of the psoas muscle, were 45 (8) and 44 (6) mm, respectively for the modified traditional and Capdevila’s approach (mean difference, 0.5 mm; 95% CI, −0.1 to 1.1]). The lumbar plexus depth for each approach at the L4 level was predicted using the following equations: Depth (mm) = 87.24 − 0.36 × height (cm) + 0.69 × weight (kg) for the modified traditional approach (r2 = 0.37) and Depth (mm) = 86.51 − 0.35 × height (cm) + 0.61 × weight (kg) for Capdevila’s approach (r2 = 0.33). The kidney was observed at the L4 level in 60 (15.9%) patients, with higher incidence in patients over 70 yr and those shorter than 150 cm.

Conclusion

The surface anatomic relations of the lumbar plexus found in this study may be useful for performing successful and safe lumbar plexus block.

Marge de sécurité pour le positionnement de l’aiguille au cours d’un bloc lombaire : étude anatomique avec imagerie par résonance magnétique

Résumé

Objectif

Nous avons cherché à fournir des données anatomiques du plexus lombaire et de la marge de sécurité pour le positionnement de l’aiguille au cours d’un bloc lombaire chez l’adulte.

Méthodes

Les images par résonance magnétique de la colonne vertébrale lombaire de 377 adultes ont été analysées. Nous avons déterminé la profondeur du plexus lombaire à partir du point d’insertion de l’aiguille pour les approches traditionnelle modifiée et de Capdevila aux niveaux L4 et L5. Les corrélations de l’âge, de la taille et du poids corporel avec la profondeur du plexus lombaire et la présence du rein sur le plan de l’apophyse transverse au niveau de L4 ont été évaluées.

Résultats

Le plexus lombaire était plus profond à l’étage L5 qu’à l’étage L4 pour les deux approches (différence moyenne : 3,2 mm [intervalle de confiance (IC) à 95 % : 2,4 à 4,0] pour l’approche traditionnelle modifiée; différence moyenne : 4,4 mm [IC à 95 % : 3,7 à 5,2] pour l’approche de Capdevila). Quatre-vingt-six patients (22,8 %) avaient l’apophyse transverse de L4 mesurant moins de 40 mm, ce qui implique que l’aiguille pourrait ne pas faire contact avec cette apophyse avec l’approche traditionnelle modifiée. Les marges de sécurité pour l’insertion de l’aiguille, définies comme étant la distance moyenne (écart-type) entre la face postérieure de l’apophyse transverse de L4 et la marge antérieure du muscle psoas, étaient de 45 (8) mm et 44 (6) mm pour, respectivement, l’approche traditionnelle modifiée et l’approche de Capdevila (différence des moyennes, 0,5 mm; IC à 95 % : −0,1 à 1,1). La profondeur du plexus lombaire pour chaque approche au niveau L4 a été prédite à l’aide des équations suivantes : Profondeur (mm) = 87,24 − 0,36 × taille (cm) + 0,69 × poids (kg) pour l’approche traditionnelle modifiée (r2 = 0,37) et Profondeur (mm) = 86,51 − 0,35 × taille (cm) + 0,61 × poids (kg) pour l’approche de Capdevila (r2 = 0,33). Le rein a été observé au niveau L4 chez 60 patients (15,9 %) avec une plus grande incidence chez les patients âgés de plus de 70 ans et chez ceux dont la taille était inférieure à 150 cm.

Conclusion

Les rapports anatomiques de la surface du corps et du plexus lombaire identifiés dans cette étude peuvent contribuer à la réalisation d’un bloc lombaire efficace et sécuritaire.

Notes

Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Gregory L. Bryson, Deputy Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

Seokha Yoo contributed substantially to the study design, data acquisition, data analysis, and writing the manuscript. Sheung-Nyoung Choi contributed substantially to data acquisition and revising the manuscript. Sun-Kyung Park contributed substantially to data acquisition and writing the manuscript. Won Ho Kim contributed substantially to the study design and data analysis. Young-Jin Lim contributed substantially to the study conception and revising the manuscript. Jin-Tae Kim contributed substantially to the study conception, study design, data analysis, and revising the manuscript.

Supplementary material

12630_2018_1280_MOESM1_ESM.pdf (508 kb)
Supplementary material 1 (PDF 507 kb)

References

  1. 1.
    Robards C, Hadzic A. Lumbar plexus block. In: Hadzic A, editor. The New York School of Regional Anesthesia Textbook of Regional Anesthesia and Acute Pain Management. 1st ed. New York: McGraw Hill Medical; 2007. p. 481-8.Google Scholar
  2. 2.
    Mannion S. Epidural spread depends on the approach used for posterior lumbar plexus block. Can J Anesth 2004; 51: 516-7.CrossRefGoogle Scholar
  3. 3.
    Litz RJ, Vicent O, Wiessner D, Heller AR. Misplacement of a psoas compartment catheter in the subarachnoid space. Reg Anesth Pain Med 2004; 29: 60-4.CrossRefGoogle Scholar
  4. 4.
    Vadi MG, Patel N, Stiegler MP. Local anesthetic systemic toxicity after combined psoas compartment-sciatic nerve block: analysis of decision factors and diagnostic delay. Anesthesiology 2014; 120: 987-96.CrossRefGoogle Scholar
  5. 5.
    Aida S, Takahashi H, Shimoji K. Renal subcapsular hematoma after lumbar plexus block. Anesthesiology 1996; 84: 452-5.CrossRefGoogle Scholar
  6. 6.
    Aveline C, Bonnet F. Delayed retroperitoneal haematoma after failed lumbar plexus block. Br J Anaesth 2004; 93: 589-91.CrossRefGoogle Scholar
  7. 7.
    Kirchmair L, Entner T, Kapral S, Mitterschiffthaler G. Ultrasound guidance for the psoas compartment block: an imaging study. Anesth Analg 2002; 94: 706-10.CrossRefGoogle Scholar
  8. 8.
    Karmakar MK, Ho AM, Li X, Kwok WH, Tsang K, Ngan Kee WD. Ultrasound-guided lumbar plexus block through the acoustic window of the lumbar ultrasound trident. Br J Anaesth 2008; 100: 533-7.CrossRefGoogle Scholar
  9. 9.
    Strid JM, Sauter AR, Ullensvang K, et al. Ultrasound-guided lumbar plexus block in volunteers; a randomized controlled trial. Br J Anaesth 2017; 118: 430-8.CrossRefGoogle Scholar
  10. 10.
    Karmakar MK, Li JW, Kwok WH, Hadzic A. Ultrasound-guided lumbar plexus block using a transverse scan through the lumbar intertransverse space: a prospective case series. Reg Anesth Pain Med 2015; 40: 75-81.CrossRefGoogle Scholar
  11. 11.
    Capdevila X, Macaire P, Dadure C, et al. Continuous psoas compartment block for postoperative analgesia after total hip arthroplasty: new landmarks, technical guidelines, and clinical evaluation. Anesth Analg 2002; 94: 1606-13.CrossRefGoogle Scholar
  12. 12.
    Farny J, Drolet P, Girard M. Anatomy of the posterior approach to the lumbar plexus block. Can J Anaesth 1994; 41: 480-5.CrossRefGoogle Scholar
  13. 13.
    Farny J, Girard M, Drolet P. Posterior approach to the lumbar plexus combined with a sciatic nerve block using lidocaine. Can J Anaesth 1994; 41: 486-91.CrossRefGoogle Scholar
  14. 14.
    Kirchmair L, Entner T, Wissel J, et al. A study of the paravertebral anatomy for ultrasound-guided posterior lumbar plexus block. Anesth Analg 2001; 93: 477-81.Google Scholar
  15. 15.
    Broadbent CR, Maxwell WB, Ferrie R, Wilso DJ, Gawne-Cain M, Russell R. Ability of anaesthetists to identify a marked lumbar interspace. Anaesthesia 2000; 55: 1122-6.CrossRefGoogle Scholar
  16. 16.
    Awad IT, Duggan EM. Posterior lumbar plexus block: anatomy, approaches, and techniques. Reg Anesth Pain Med 2005; 30: 143-9.Google Scholar
  17. 17.
    Kirchmair L, Lirk P, Colvin J, Mitterschiffthaler G, Moriggl B. Lumbar plexus and psoas major muscle: not always as expected. Reg Anesth Pain Med 2008; 33: 109-14.Google Scholar
  18. 18.
    Pandin PC, Vandesteene A, d’Hollander AA. Lumbar plexus posterior approach: a catheter placement description using electrical nerve stimulation. Anesth Analg 2002; 95: 1428-31.CrossRefGoogle Scholar
  19. 19.
    Heller AR, Fuchs A, Rossel T, et al. Precision of traditional approaches for lumbar plexus block: impact and management of interindividual anatomic variability. Anesthesiology 2009; 111: 525-32.CrossRefGoogle Scholar
  20. 20.
    Parkinson SK, Mueller JB, Little WL, Bailey SL. Extent of blockade with various approaches to the lumbar plexus. Anesth Analg 1989; 68: 243-8.Google Scholar
  21. 21.
    Ilfeld BM, Loland VJ, Mariano ER. Prepuncture ultrasound imaging to predict transverse process and lumbar plexus depth for psoas compartment block and perineural catheter insertion: a prospective, observational study. Anesth Analg 2010; 110: 1725-8.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2018

Authors and Affiliations

  1. 1.Department of Anesthesiology and Pain MedicineSeoul National University HospitalSeoulKorea

Personalised recommendations