Using physiological monitoring data for performance feedback: an initiative using thermoregulation metrics

  • Matthias Görges
  • Nicholas C. West
  • Simon D. Whyte
Reports of Original Investigations

Abstract

Background

Feedback of performance data can improve professional practice and outcomes. Vital signs are not routinely used for quality improvement because of their limited access. Intraoperative hypothermia has been associated with deleterious effects, including surgical site infections and bleeding. We speculated that providing feedback could help keep temperature monitoring and management a priority in the anesthesiologist’s mind, thereby improving perioperative temperature management. We hypothesized that feedback on thermoregulation metrics, without changes in policy, could reduce temperature-monitoring delays at the start of scoliosis correction surgery.

Methods

Although our tertiary pediatric centre does not have an anesthesia information management system, vital signs for all surgical cases are recorded in real time. Temperature data from children undergoing spine surgery are extracted from a vital signs databank and analyzed using MATLAB. Spine team anesthesiologists are provided with both team and individualized feedback regarding two variables: the percentage of time that patients are hypothermic and the time delay from the start of the case to the first temperature monitoring (our primary outcome). These data are shared every six months as run charts for the entire group and as anonymized (coded) box-and-whisker plots for each anesthesiologist.

Results

This feedback of temperature-delay data reduced the median [interquartile range] delay from 39.0 [18.7-61.5] min to 14.4 [10.8-22.9] min (median reduction, 21.8 min; 95% confidence interval, 14.9 to 28.2; P < 0.001). It did not, however, further reduce the percentage of time patients remained hypothermic beyond the improvements already achieved with prewarming.

Conclusion

Feedback of intraoperative thermoregulation management improved both group and individual performances as measured by significant, sustained reductions in temperature-monitoring delays. Thus, intraoperative vital signs data may improve the quality of, and reduce the variability in, anesthetic practice.

Utilisation des données de monitorage physiologique pour les rétroactions sur la performance: une initiative basée sur les mesures de la thermorégulation

Résumé

Contexte

Les retours de performance peuvent améliorer la pratique professionnelle et les pronostics. Habituellement, les signes vitaux ne sont pas utilisés pour l’amélioration de la qualité en raison de leur accès limité. L’hypothermie peropératoire a été associée à des effets délétères, notamment à des infections du site chirurgical et des saignements. Nous avons émis l’hypothèse que des renvois d’information aideraient l’anesthésiste à prioriser le monitorage et la prise en charge de la température et ainsi à améliorer la prise en charge de la température périopératoire. Selon notre hypothèse, des renvois des mesures de la thermorégulation, sans modification des politiques de prise en charge, pourraient réduire les retards dans le monitorage de la température en début de chirurgie de correction de scoliose.

Méthode

Bien que notre centre tertiaire de pédiatrie ne dispose pas d’un système de prise en charge des renseignements anesthésiques, les signes vitaux sont enregistrés en temps réel pour tous les cas chirurgicaux. Les données de température des enfants subissant une chirurgie de la colonne vertébrale ont été extraites d’une banque de données de signes vitaux et analysées à l’aide de MATLAB. On a présenté aux anesthésiologistes de l’équipe rachidienne des renvois d’information d’équipe et individuelle concernant deux variables : le pourcentage de temps pendant lequel les patients sont en hypothermie et le laps de temps entre le début du cas et le premier monitorage de température (notre critère d’évaluation principal). Ces données sont partagées tous les six mois sous forme de graphique de séquences pour le groupe complet et sous forme de diagramme des quartiles dépersonnalisé (codé) pour chaque anesthésiologiste.

Résultats

Ce renvoi des données de retard dans la prise de température a réduit le retard moyen [écart interquartile] de 39,0 [18,7-61,5] min à 14,4 [10,8-22,9] min (réduction médiane, 21,8 min; intervalle de confiance 95 %, 14,9 à 28,2; P < 0,001). Toutefois, ce renvoi d’information n’a pas permis de réduire davantage le pourcentage de temps durant lequel les patients étaient en hypothermie au-delà des améliorations déjà apportées grâce au préchauffage.

Conclusion

Les renvois d’information sur la prise en charge de la thermorégulation peropératoire ont amélioré les performances du groupe et des individus telles que mesurées par des réductions significatives et durables des retards dans le monitorage de la température. Par conséquent, les données de signes vitaux peropératoires peuvent améliorer la qualité et réduire la variabilité de la pratique anesthésique.

References

  1. 1.
    Benn J, Arnold G, Wei I, Riley C, Aleva F. Using quality indicators in anaesthesia: feeding back data to improve care. Br J Anaesth 2012; 109: 80-91.CrossRefPubMedGoogle Scholar
  2. 2.
    Benn J, Arnold G, D’Lima D, et al. Evaluation of a continuous monitoring and feedback initiative to improve quality of anaesthetic care: a mixed-methods quasi-experimental study. Health Serv Deliv Res 2015; 3: 1-248.CrossRefGoogle Scholar
  3. 3.
    Ivers N, Jamtvedt G, Flottorp S, et al. Audit and feedback: effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev 2012; 6: CD000259.Google Scholar
  4. 4.
    Nair BG, Newman SF, Peterson GN, Wu WY, Schwid HA. Feedback mechanisms including real-time electronic alerts to achieve near 100% timely prophylactic antibiotic administration in surgical cases. Anesth Analg 2010; 111: 1293-300.CrossRefPubMedGoogle Scholar
  5. 5.
    Sutherland T, Beloff J, Lightowler M, et al. Description of a multidisciplinary initiative to improve SCIP measures related to pre-operative antibiotic prophylaxis compliance: a single-center success story. Patient Saf Surg 2014; 8: 37.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Malapero RJ, Gabriel RA, Gimlich R, et al. An anesthesia medication cost scorecard-concepts for individualized feedback. J Med Syst 2015; 39: 48.CrossRefPubMedGoogle Scholar
  7. 7.
    Gabriel RA, Gimlich R, Ehrenfeld JM, Urman RD. Operating room metrics score card-creating a prototype for individualized feedback. J Med Syst 2014; 38: 144.CrossRefPubMedGoogle Scholar
  8. 8.
    D’Lima DM, Moore J, Bottle A, Brett SJ, Arnold GM, Benn J. Developing effective feedback on quality of anaesthetic care: what are its most valuable characteristics from a clinical perspective? J Health Serv Res Policy 2015; 20(1 Suppl): 26-34.CrossRefPubMedGoogle Scholar
  9. 9.
    Epstein RH, Dexter F, Patel N. Influencing anesthesia provider behavior using anesthesia information management system data for near real-time alerts and post hoc reports. Anesth Analg 2015; 121: 678-92.CrossRefPubMedGoogle Scholar
  10. 10.
    National Collaborating Centre for Nursing and Supportive Care. The Management of Inadvertent Perioperative Hypothermia in Adults. NICE Clinical Guidelines, No. 65. London, United Kingdom; 2008.Google Scholar
  11. 11.
    Linam WM, Margolis PA, Staat MA, et al. Risk factors associated with surgical site infection after pediatric posterior spinal fusion procedure. Infect Control Hosp Epidemiol 2009; 30: 109-16.PubMedGoogle Scholar
  12. 12.
    Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med 1996; 334: 1209-15.CrossRefPubMedGoogle Scholar
  13. 13.
    Sessler DI. Temperature monitoring and perioperative thermoregulation. Anesthesiology 2008; 109: 318-38.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sun Z, Honar H, Sessler DI, et al. Intraoperative core temperature patterns, transfusion requirement, and hospital duration in patients warmed with forced air. Anesthesiology 2015; 122: 276-85.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shafer SL, Dexter F, Brull SJ. Deadly heat: economics of continuous temperature monitoring during general anesthesia. Anesth Analg 2014; 119: 1235-7.CrossRefPubMedGoogle Scholar
  16. 16.
    Arkiliç CF, Akça O, Taguchi A, Sessler DI, Kurz A. Temperature monitoring and management during neuraxial anesthesia: an observational study. Anesth Analg 2000; 91: 662-6.CrossRefPubMedGoogle Scholar
  17. 17.
    Findlay GP, Goodwin AP, Protopapa KL, Smith NC, Mason M; NCEPOD. Knowing the Risk: a Review of the Peri-operative Care of Surgical Patients. London, United Kingdom; 2011.Google Scholar
  18. 18.
    Görges M, Ansermino JM, Whyte SD. A retrospective audit to examine the effectiveness of preoperative warming on hypothermia in spine deformity surgery patients. Paediatr Anaesth 2013; 23: 1054-61.CrossRefPubMedGoogle Scholar
  19. 19.
    Woodall WH, Adams BM, Benneyan JC. The use of control charts in healthcare. In: Faltin FW, Kenett RS, Ruggeri F (Eds). Statistical Methods in Healthcare. Chichester, UK: John Wiley & Sons, Ltd; 2012: 251-67.Google Scholar
  20. 20.
    Lauder G, Görges M, West N, Karlsdóttir E. Neonatal Vital Sign Deviations During General Anaesthesia: Developing Consensus On What Represents Significant Change. Proceedings of the 2015 Association of Paediatric Anaesthetists of Great Britain & Ireland Annual Scientific Meeting. Aberdeen, UK: Association of Paediatric Anaesthetists of Great Britain and Ireland; 2015: 108.Google Scholar
  21. 21.
    Görges M, West NC, Karlsdóttir E, Ansermino JM, Cassidy M, Lauder GR. Developing an objective method for analyzing vital signs changes in neonates during general anesthesia. Paediatr Anaesth 2016; 26: 1071–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Bedford JE, Görges M, Whyte SD. Anonymised Individual Feedback on Management of Intraoperative Thermoregulation in Children - a NSQIP-P Quality Improvement Project. Proceedings of the 2015 ACS NSQIP National Conference. Chicago, IL: American College of Surgeons; 2015: ACSNSQIP20150192.Google Scholar
  23. 23.
    Selby JV, Schmittdiel JA, Lee J, et al. Meaningful variation in performance: what does variation in quality tell us about improving quality? Med Care 2010; 48: 133-9.CrossRefPubMedGoogle Scholar
  24. 24.
    Görges M, West N, Cheung W, Zhou G, Miyanji F, Whyte S. Preoperative warming and undesired surgical and anesthesia outcomes in pediatric spinal surgery - a retrospective cohort study. Paediatr Anaesth 2016; 26: 866-75.CrossRefPubMedGoogle Scholar
  25. 25.
    Bissonnette B. Temperature monitoring in pediatric anesthesia. Int Anesthesiol Clin 1992; 30: 63-76.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2016

Authors and Affiliations

  1. 1.Department of Anesthesiology, Pharmacology & TherapeuticsThe University of British ColumbiaVancouverCanada
  2. 2.Research InstituteBC Children’s HospitalVancouverCanada

Personalised recommendations