Advertisement

Brief review: Adoption of electronic medical records to enhance acute pain management

  • David H. Goldstein
  • Rachel Phelan
  • Rosemary Wilson
  • Amanda Ross-White
  • Elizabeth G. VanDenKerkhof
  • John P. Penning
  • Melanie JaegerEmail author
Review Article/Brief Review

Abstract

Purpose

The purpose of this paper is to examine physician barriers to adopting electronic medical records (EMRs) as well as anesthesiologists’ experiences with the EMRs used by the acute pain management service at two tertiary care centres in Canada.

Source

We first review the recent literature to determine if physician barriers to adoption are changing given the exponential growth of information technology and the evolving healthcare environment. We next report on institutional experience from two academic health sciences centres regarding the challenges they encountered over the past ten years in developing and implementing an electronic medical record system for acute pain management.

Principal findings

The key identified barriers to adoption of EMRs are financial, technological, and time constraints. These barriers are identical to those reported in a systematic review performed prior to 2009 and remain significant factors challenging implementation. These challenges were encountered during our institution’s process of adopting EMRs specific to acute pain management. In addition, our findings emphasize the importance of physician participation in the development and implementation stages of EMRs in order to incorporate their feedback and ensure the EMR system is in keeping with their workflow.

Conclusions

Use of EMRs will inevitably become the standard of care; however, many barriers persist to impede their implementation and adoption. These challenges to implementation can be facilitated by a corporate strategy for change that acknowledges the barriers and provides the resources for implementation. Adoption will facilitate benefits in communication, patient management, research, and improved patient safety.

Keywords

Electronic Medical Record Local Area Network Electronic Medical Record System Anesthesia Information Management System Acute Pain Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Article de synthèse court : L’adoption du dossier médical informatisé pour améliorer la prise en charge de la douleur aiguë

Résumé

Objectif

L’objectif de cet article est d’examiner les réticences des médecins à l’adoption du dossier médical informatisé (DMI) ainsi que l’expérience des anesthésiologistes avec les DMI utilisés au service de prise en charge de la douleur aiguë de deux centres tertiaires canadiens.

Source

Nous passons tout d’abord en revue la littérature récente afin de déterminer si les réticences des médecins à l’adoption évoluent étant donné la croissance exponentielle des technologies de l’information et l’évolution de l’environnement des soins de santé. Par la suite, nous rapportons l’expérience institutionnelle de deux centres universitaires des sciences de la santé et les défis qu’ils ont rencontrés au cours des dix dernières années en matière de mise au point et de mise en œuvre d’un système de dossier médical informatisé pour la prise en charge de la douleur aiguë.

Constatations principales

Les principaux obstacles à l’adoption du DMI que nous avons identifiés sont liés à des contraintes financières, technologiques et de temps. Ces obstacles sont identiques à ceux rapportés dans une revue méthodique réalisée avant 2009 et demeurent d’importants facteurs rendant difficiles la mise en œuvre d’un tel système. Nous avons rencontré ces difficultés pendant le processus d’adoption de DMI spécifiques à la prise en charge de la douleur aiguë dans notre institution. En outre, nos résultats soulignent l’importance de la participation des médecins dans les étapes de mise au point et de mise en œuvre du DMI afin d’intégrer leurs commentaires et de garantir que le système de DMI s’intègre dans leur flux de travail.

Conclusion

L’utilisation du DMI deviendra inévitablement la norme de soins; toutefois, de nombreux obstacles persistent et freinent sa mise en œuvre et son adoption. Ces défis à la mise en œuvre peuvent être résolus en utilisant une stratégie institutionnelle de changement qui tient compte de ces obstacles et fournit les ressources nécessaires à la mise en œuvre. En adoptant le DMI, la communication, la prise en charge des patients, la recherche et la sécurité des patients seront toutes améliorées.

Notes

Acknowledgements

The authors gratefully acknowledge the input from Drs. Michael Szeto, Alan Chaput, and Ilia Charapov, and from Susan Madden (APN) regarding barriers to implementation experienced at The Ottawa Hospital.

Funding

Financial support was provided by grants from the Canadian Foundation for Innovation, the Ontario Innovation Trust, Queen’s University and Kingston General Hospital. Financial and/ or in-kind support was also provided by Cissec Corporation, the Claire Nelson Bequest Fund, Bickell Foundation, Health Evidence Application and Linkage Network, Pfizer, Merck, Purdue Pharma, Avaya, SMC Networks, Cisco, Compaq, and Smith Industries.

Conflicts of interest

The authors have no conflicts of interest to declare.

References

  1. 1.
    Accreditation Canada. 2011 Report on Required Organizational Practices. Ottawa, ON, Canada: Accreditation Canada; 2011. Available from URL: http://www.accreditation.ca/news-and-publications/publications/report-on-rops/ (accessed July 2013).
  2. 2.
    Sommer M, de Rijke JM, van Kleef M, et al. The prevalence of postoperative pain in a sample of 1490 surgical inpatients. Eur J Anaesthesiol 2008; 25: 267-74.PubMedCrossRefGoogle Scholar
  3. 3.
    Apfelbaum JL, Chen C, Mehta SS, Gan TJ. Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged. Anesth Analg 2003; 97: 534-40.PubMedCrossRefGoogle Scholar
  4. 4.
    International Association for the Study of Pain. Global Year Against Acute Pain. October 2010-October 2011. Acute Pain and Surgery. Available from URL: http://www.iasp-pain.org/AM/Template.cfm?Section=Fact_Sheets3&Template=/CM/ContentDisplay.cfm&ContentID=12977 (accessed July 2013).
  5. 5.
    Statistics Canada. Table 105-3003. Non-Emergency Surgeries, Distribution of Waiting Times, Household Population Aged 15 and Over, Canada, Provinces and Territories, Occasional CANSIM (database). Available from URL: http://www5.statcan.gc.ca/cansim/a26?lang=eng&retrLang=eng&id=1053003&paSer=&pattern=&stByVal=1&p1=1&p2=49&tabMode=dataTable&csid= (accessed September 2013).
  6. 6.
    Singh JA, Lewallen DG. Medical and psychological comorbidity predicts poor pain outcomes after total knee arthroplasty. Rheumatology 2013; 52: 916-23.PubMedCrossRefGoogle Scholar
  7. 7.
    White PF, White LM, Monk T, et al. Perioperative care for the older outpatient undergoing ambulatory surgery. Anesth Analg 2012; 114: 1190-215.PubMedCrossRefGoogle Scholar
  8. 8.
    Lutz W, Sanderson W, Scherbov S. The coming acceleration of global population aging. Nature 2008; 451: 716-9.PubMedCrossRefGoogle Scholar
  9. 9.
    Harden RN, Bruehl S, Stanos S, et al. Prospective examination of pain-related and psychological predictors of CRPS-like phenomena following total knee arthroplasty: a preliminary study. Pain 2003; 106: 393-400.PubMedCrossRefGoogle Scholar
  10. 10.
    Forsythe ME, Dunbar MJ, Hennigar AW, Sullivan MJ, Gross M. Prospective relation between catastrophizing and residual pain following knee arthroplasty: two-year follow-up. Pain Res Manag 2008; 13: 335-41.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Katz J, Buis T, Cohen L. Locked out and still knocking: predictors of excessive demands for postoperative intravenous patient-controlled analgesia. Can J Anesth 2008; 55: 88-99.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim H, Ramsay E, Lee H, Wahl S, Dionne RA. Genome-wide association study of acute post-surgical pain in humans. Pharmacogenomics 2009; 10: 171-9.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Stamer UM, Mpasios N, Stuber F, Maier C. A survey of acute pain services in Germany and a discussion of International survey data. Reg Anesth Pain Med 2002; 27: 125-31.PubMedGoogle Scholar
  14. 14.
    Hu P, Owens T, Harmon D. A survey of acute pain services in teaching hospitals in the Republic of Ireland. Ir J Med Sci 2007; 176: 225-8.PubMedCrossRefGoogle Scholar
  15. 15.
    Goldstein DH, Wilson R, VanDenKerkhof EG. Electronic monitoring in an acute pain management service. Pain Med 2007; 8: S94-100.CrossRefGoogle Scholar
  16. 16.
    Nasir D, Howard JE, Joshi GP, Hill GE. A survey of acute pain service structure and function in United States hospitals. Pain Res Treat 2011. DOI: 10.1155/2011/934932.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Baird P. Making the right connections. Biomedical Instrumentation & Technology 2013; 47: 180.CrossRefGoogle Scholar
  18. 18.
    Effken JA, Gephart SM, Brewer BB, Carley KM. Using *ORA, a network analysis tool, to assess the relationship of handoffs to quality and safety outcomes. Comput Inform Nurs 2013; 31: 36-44.PubMedCrossRefGoogle Scholar
  19. 19.
    Boonstra A, Broekhuis M. Barriers to the acceptance of electronic medical records by physicians from systematic review to taxonomy and interventions. BMC Health Serv Res 2010. DOI: 10.1186/1472-6963-10-231.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Pearson A, Wiechula R, Court A, Lockwood C. The JBI model of evidence-based healthcare. Int J Evid Based Healthc 2005; 3: 207-15.PubMedGoogle Scholar
  21. 21.
    Holden RJ. Physicians’ beliefs about using EMR and CPOE: in pursuit of a contextualized understanding of health IT use behavior. Int J Med Inform 2010; 79: 71-80.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Holden RJ. What stands in the way of technology-mediated patient safety improvements?: A study of facilitators and barriers to physicians’ use of electronic health records. J Patient Saf 2011; 7: 193-203.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Holden RJ. Social and personal normative influences on healthcare professionals to use information technology: towards a more robust social ergonomics. Theor Issues Ergon 2012; 13: 546-69.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Bramble JD, Galt KA, Siracuse MV, et al. The relationship between physician practice characteristics and physician adoption of electronic health records. Health Care Manage Rev 2010; 35: 55-64.PubMedCrossRefGoogle Scholar
  25. 25.
    Holanda AA, do Carmo E Sa HL, Vieira AP, Catrib AM. Use and satisfaction with electronic health record by primary care physicians in a health district in Brazil. J Med Syst 2012; 36: 3141-9.Google Scholar
  26. 26.
    Kaushal R, Bates DW, Jenter CA, et al. Imminent adopters of electronic health records in ambulatory care. Inform Prim Care 2009; 17: 7-15.PubMedGoogle Scholar
  27. 27.
    Leu MG, O’Connor KG, Marshall R, Price DT, Klein JD. Pediatricians’ use of health information technology: a national survey. Pediatrics 2012; 130: e1441-6.PubMedCrossRefGoogle Scholar
  28. 28.
    Peterson LT, Ford EW, Eberhardt J, Huerta TR, Menachemi N. Assessing differences between physicians’ realized and anticipated gains from electronic health record adoption. J Med Syst 2011; 35: 151-61.PubMedCrossRefGoogle Scholar
  29. 29.
    Rosemann T, Marty F, Bhend H, Wagner J, Brunner L, Zoller M. Utilisation of information technologies in ambulatory care in Switzerland. Swiss Med Wkly 2010; 140: w13088.PubMedGoogle Scholar
  30. 30.
    Stream GR. Trends in adoption of electronic health records by family physicians in Washington state. Inform Prim Care 2009; 17: 145-52.PubMedGoogle Scholar
  31. 31.
    Yan H, Gardner R, Baier R. Beyond the focus group: understanding physicians’ barriers to electronic medical records. Jt Comm J Qual Patient Saf 2012; 38: 184-91.PubMedGoogle Scholar
  32. 32.
    Trentman TL, Mueller JT, Ruskin KJ, Noble BN, Doyle CA. Adoption of anesthesia information management systems by US anesthesiologists. J Clin Monit Comput 2011; 25: 129-35.PubMedCrossRefGoogle Scholar
  33. 33.
    Greiver M, Barnsley J, Glazier RH, Moineddin R, Harvey BJ. Implementation of electronic medical records: theory-informed qualitative study. Can Fam Physician 2011; 57: e390-7.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Hackl WO, Hoerbst A, Ammenwerth E. “Why the hell do we need electronic health records?”. EHR acceptance among physicians in private practice in Austria: a qualitative study. Methods Inf Med 2011; 50: 53-61.PubMedCrossRefGoogle Scholar
  35. 35.
    Canada Health Infoway. The Emerging Benefits of Electronic Medical Record Use in Community-Based Care, 2013. Available from URL: https://www.infoway-inforoute.ca/index.php/resources/infoway-corporate/annual-reports?view=docman (accessed July 2013).
  36. 36.
    Schoen C, Osborn R, Squires D, et al. A survey of primary care doctors in ten countries shows progress in use of health information technology, less in other areas. Health Aff (Millwood) 2012; 12: 2805-16.CrossRefGoogle Scholar
  37. 37.
    Office of the National Coordinator for Health Information Technology. Electronic Health Record Adoption and Utilization. 2012 Highlights and Accomplishments. Available from URL: http://www.healthit.gov/sites/default/files/highlights_accomplishments_ehr_adoptionsummer2012_2.pdf (accessed July 2013).
  38. 38.
    Junglas I, Abraham C, Ives B. Mobile technology at the frontlines of patient care: understanding fit and human drives in utilization decisions and performance. Decision Support Systems 2009; 46: 634-47.CrossRefGoogle Scholar
  39. 39.
    Gocsik T. Last man standing? Advice for engaging anesthesia clinicians when implementing an EMR in anesthesiology services. Healthc Inform 2012; 29(32): 37.Google Scholar
  40. 40.
    Richardson JE, Abramson EL, Pfoh ER, Kaushal R, HITEC Investigators. How communities are leveraging the health information technology workforce to implement electronic health records. AMIA Annu Symp Proc 2011; 2011: 1186-95.PubMedGoogle Scholar
  41. 41.
    Balust J, Egger Halbeis CB, Macario A. Prevalence of anaesthesia information management systems in university-affiliated hospitals in Europe. Eur J Anaesthesiol 2010; 27: 202-8.PubMedCrossRefGoogle Scholar
  42. 42.
    Egger Halbeis CB, Epstein RH, Macario A, Pearl RG, Grunwald Z. Adoption of anesthesia information management systems by academic departments in the United States. Anesth Analg 2008; 107: 1323-9.Google Scholar
  43. 43.
    Vigoda MM, Rothman B, Green JA. Shortcomings and challenges of information system adoption. Anesthesiol Clin 2011; 29: 397-412.PubMedCrossRefGoogle Scholar
  44. 44.
    Shah NJ, Tremper KK, Kheterpal S. Anatomy of an anesthesia information management system. Anesthesiol Clin 2011; 29: 355-65.PubMedCrossRefGoogle Scholar
  45. 45.
    Springman SR. Integration of the enterprise electronic health record and anesthesia information management systems. Anesthesiol Clin 2011; 29: 455-83.PubMedGoogle Scholar
  46. 46.
    Dagnone RV, Wilson R, Goldstein DH, Murdoch J, Rimmer MJ, VanDenKerkhof EG. How do patients perceive electronic documentation at the bedside? J Healthc Qual 2006; 28: 37-44.PubMedCrossRefGoogle Scholar
  47. 47.
    Goldstein DH, Ellis J, Brown R, et al. Recommendations for improved acute pain services: Canadian collaborative acute pain initiative. Pain Res Manag 2004; 9: 123-30.PubMedGoogle Scholar
  48. 48.
    VanDenKerkhof EG, Goldstein DH, Rimmer MJ, Tod DA, Lee HK. Evaluation of handheld computers compared to pen and paper for documentation on an acute pain service. Acute Pain 2004; 6: 115-21.CrossRefGoogle Scholar
  49. 49.
    Goldstein DH, VanDenKerkhof EG, Blaine WC. Acute pain management services have progressed, albeit insufficiently in Canadian academic hospitals. Can J Anesth 2004; 51: 231-5.PubMedCrossRefGoogle Scholar
  50. 50.
    VanDenKerkhof EG, Goldstein DH, Lane J, Rimmer MJ, Van Dijk JP. Using a personal digital assistant enhances gathering of patient data on an acute pain management service: a pilot study. Can J Anesth 2003; 50: 368-75.PubMedCrossRefGoogle Scholar
  51. 51.
    Goldstein DH, VanDenKerkhof EG, Rimmer MJ. A model for real time information at the patient’s side using portable computers on an acute pain service. Can J Anesth 2002; 49: 749-54.PubMedCrossRefGoogle Scholar
  52. 52.
    Endersby R, VanDenKerkhof EG, Ho E. Assessing attitudes and perceptions about using electronic documentation on an acute pain management service. Can J Anesth 2009; DOI:  10.1007/s12630-009-9235-2 (abstract).
  53. 53.
    Kotter JP. Leading change. Boston, MA: Harvard Business School Press; 1996.Google Scholar

Copyright information

© Canadian Anesthesiologists' Society 2013

Authors and Affiliations

  • David H. Goldstein
    • 1
  • Rachel Phelan
    • 1
  • Rosemary Wilson
    • 1
    • 2
  • Amanda Ross-White
    • 3
  • Elizabeth G. VanDenKerkhof
    • 1
    • 2
  • John P. Penning
    • 4
  • Melanie Jaeger
    • 1
    • 5
    Email author
  1. 1.Department of Anesthesiology & Perioperative MedicineQueen’s UniversityKingstonCanada
  2. 2.School of NursingQueen’s UniversityKingstonCanada
  3. 3.Bracken Health Sciences LibraryQueen’s UniversityKingstonCanada
  4. 4.Department of AnesthesiologyThe Ottawa HospitalOttawaCanada
  5. 5.Department of Anesthesiology & Perioperative Medicine, Victory 2Kingston General Hospital, Queen’s UniversityKingstonCanada

Personalised recommendations