Securitas Vialis

, Volume 6, Issue 1–3, pp 13–22 | Cite as

Análisis de los incentives de seguridad vial en las concesiones de carreteras en España

  • Thais Rangel
  • José Manuel Vassallo
  • Blanca Arenas
Modelos de evaluacion de politicas

Resumen

Las asociaciones público-privadas (APP) se ejecutan sobre todo por tres razones: para eludir las restricciones presupuestarias, fomentar la eficiencia y la mejora de la calidad en la provisión de infraestructura pública. Una de las maneras de alcanzar este último objetivo es mediante la introducción de normas basadas en el rendimiento vinculado a las bonificaciones y penalizaciones para premiar o castigar el desempeño del contratista. Estos estándares basados en el desempeño a menudo se refieren a diferentes aspectos como los problemas técnicos, ambientales y de seguridad. Este documento se centra en la aplicación de incentivos basados en la seguridad de las APP. El objetivo principal de este trabajo es analizar si los incentivos para mejorar la seguridad vial en las APP son eficaces en la mejora de relaciones de seguridad en España. Para ello, los modelos de regresión binominal negativa se han aplicado con la información de la red española de alta capacidad en 2006. Los resultados indican que a pesar de que la seguridad vial está muy influenciada por variables que no son controlables tanto por el contratista como por el Tráfico medio diario anual y el porcentaje de vehículos pesados en la autopista, la aplicación de incentivos de seguridad en las APP tiene una influencia positiva en la reducción de las muertes, lesiones y accidentes.

Palabras clave Asociaciones público-privadas Normas de calidad basadas en el rendimiento Seguridad vial 

Analysis of road safety incentives in highway concessions in Spain

Abstract

Public Private Partnerships (PPPs) are mostly implemented for three reasons: to circumvent budgetary constraints, encourage efficiency and improvement of quality in the provision of public infrastructure. One of the ways of reaching the latter objective is by the introduction of performance-based standards tied to bonuses and penalties to reward or punish the performance of the contractor. These performance based standards often refer to different aspects such as technical, environmental and safety issues. This paper focuses on the implementation of safety based incentives in PPPs. The main aim of this paper is to analyze whether the incentives to improve road safety in PPPs are effective in improving safety ratios in Spain. To this end, negative binomial regression models have been applied using information from the Spanish high capacity network in 2006. The findings indicate that even though road safety is highly influenced by variables that are not much controllable by the contractor such as the Average Annual Daily Traffic and the percentage of heavy vehicles in the highway, the implementation of safety incentives in PPPs has a positive influence in the reduction of fatalities, injuries and accidents.

Keywords

Pubic private partnerships Performance-based quality standards Road safety 

References

  1. 1.
    Abdel-Aty, M. A., & Essam Radwan, E. A. (2000). Modeling traffic accident occurrence and involvement. Accident Analysis and Prevention, 32, 633–642.CrossRefGoogle Scholar
  2. 2.
    Akaike, H. (1974). A new look at the statistical model identification. IEEE Transaction on Automatic Control, 19, 716–723.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arenas, B., Aparicio, F., González, C., & Gómez, A. (2009). The influence of heavy good vehicle traffic on accidents on different types of Spanish interurban roads. Accident Analysis and Prevention, 41, 15–24.CrossRefGoogle Scholar
  4. 4.
    Caliendo, C., Guida, M., & Parisi, A. (2007). A crash-prediction model for multilane roads. Accident Analysis and Prevention, 39, 657–670.CrossRefGoogle Scholar
  5. 5.
    Chang, L. Y. (2005). Analysis of freeway accident frequencies: negative binomial regression versus artificial neural network. Safety Science, 43, 541–557.CrossRefGoogle Scholar
  6. 6.
    Fridstrøm, L., Ifver, J., Ingebrigtsen, S., Kumala, R., & Krogsgard Thomsen, L. (1995). Measuring the contribution of randomness, exposure, weather, and daylight to the variation in road accident counts. Accident Analysis and Prevention, 27, 1–20.CrossRefGoogle Scholar
  7. 7.
    Harding, J., Bodarwé, H., Čadež, I. (2010). Evaluation of availability and service performance based payment mechanisms for PPP Road Traffic Infrastructure Projects. Transportation Research Board, Washington, D.C.Google Scholar
  8. 8.
    Hauer, E. (2004). Safety models for urban four lane undivided road segments. Transportation Research Board Nº 985901, TRB. Washington D.C, pp. 96–105.Google Scholar
  9. 9.
    Hauer, E., Bamfo, J. (1997). Two tools for find what function links the dependent variable to the explanatory variables. In Proceedings of the ICTCT Conference. Lund.Google Scholar
  10. 10.
    Hiselius, L. W. (2004). Estimating the relationship between accident frequency and homogeneous and inhomogeneous traffic flows. Accident Analysis and Prevention, 36, 985–992.CrossRefGoogle Scholar
  11. 11.
    Ivan, J., O’Mara, P. (1997). Prediction of traffic accident rates using Poisson regression. 76th Annual Meeting of the Transportation Research Board Nº 970861, Washington, D.C.Google Scholar
  12. 12.
    Izquierdo, R., & Vassallo, J. M. (2004). Nuevos sistemas de gestión y financiación de infraestructuras de transporte. Madrid: Colegio de Ingenieros de Caminos, Canales y Puertos.Google Scholar
  13. 13.
    Jovanis, P., Chang, H. (1986). Modeling the relationship of accident to mile travelled. Transportation Research Record Nº 1068. TRB. National Research Council, Washington DC., pp. 42–51.Google Scholar
  14. 14.
    Miaou, S. P., & Lum, H. (1993). Modeling vehicle accidents and highway geometric design relationships. Accident Analysis and Prevention, 25, 689–709.CrossRefGoogle Scholar
  15. 15.
    Milton, J., & Mannering, F. (1998). The relationship among highway geometrics, traffic-related elements and motor vehicle accident frequencies. Transportation, 25, 395–413.CrossRefGoogle Scholar
  16. 16.
    Ministerio de Fomento (2006). Mapa de Tráfico 2006. Dirección General de Carreteras, Madrid, España.Google Scholar
  17. 17.
    Ministerio de Fomento. (2007). Informe 2007 sobre el sector de autopistas de peaje en España. España: Delegación del Gobierno en las Sociedades Concesionarias de Autopistas Nacionales de Peaje.Google Scholar
  18. 18.
    Ministerio del Interior (2006). Base de datos de accidentes. Dirección General de Tráfico, España.Google Scholar
  19. 19.
    Noland, R. B., & Oh, L. (2004). The effect of infrastructure and demographic change on traffic-related fatalities and crashes: a case study of Illinois county-level data. Accident Analysis and Prevention, 36, 525–532.CrossRefGoogle Scholar
  20. 20.
    Ossiander, E. M., & Cummings, P. (2002). Freeway speed limits and traffic fatalities in Washington State. Accident Analysis and Prevention, 34, 13–18.CrossRefGoogle Scholar
  21. 21.
    Persaud, B., Retting, R. A., Lyon, C. (2000). Guidelines for identification of hazardous highway curves. Transportation Research Record Nº1717, pp. 14–18.Google Scholar
  22. 22.
    Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Shankar, V., Mannering, F., & Barfield, W. (1995). Effect of roadway geometrics and environmental factors on rural freeway accidents frequencies. Accident Analysis and Prevention, 27, 371–389.CrossRefGoogle Scholar
  24. 24.
    Vassallo, J. M. (2007). Implementation of quality criteria in tendering and regulating infrastructure management contracts. Journal of Construction Engineering and Management, 133, 553–561.CrossRefGoogle Scholar
  25. 25.
    Vassallo, J.M. and Gallego, J. (2005). Risk-sharing in the New Public Works Concession Law in Spain. Transportation Research Record Nº 1932. TRB, National Research Council, Washington, DC, pp. 1–8.Google Scholar
  26. 26.
    Vitaliano, D. F., & Held, J. (1991). Road accident external effects: an empirical assessment. Applied Economics, 23, 373–378.CrossRefGoogle Scholar

Copyright information

© Etrasa 2013

Authors and Affiliations

  • Thais Rangel
    • 1
  • José Manuel Vassallo
    • 1
  • Blanca Arenas
    • 2
  1. 1.Transport Research Centre (TRANSyT)Technical University of MadridMadridSpain
  2. 2.University Institute for Automobile Research (INSIA)Technical University of MadridMadridSpain

Personalised recommendations