Skip to main content
Log in

Temperature variation characteristics in flocculation settlement of tailings and its mechanism

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Rapid flocculation and settlement (FS) of mine tailings is significant for the improvement and development of the filling process, whereas the settlement velocity (SV) of tailings in FS has been recognized as a key parameter to evaluate the settlement effect. However, the influence of temperature on the SV and its mechanism have not been studied. FS experiments on tailings with various ambient temperatures were carried out. The SVs of tailings with a solid waste content of 10wt% and an anionic polyacrylamide content of 20 g·t−1 were measured at different temperatures. The SV presented an “N”-shaped variation curve as the temperature changed from 5 to 40°C. The mechanism of these results can be explained from the perspective of the electric double-layer repulsive force, molecular dynamics, and the polymer flocculation principle, as revealed from the scanning electron microscopy of floc particles. The findings will be beneficial in the design of tailings dewatering processes and save costs in the production of cemented paste backfill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Benzaazoua M. Fall, and T. Belem, A contribution to understanding the hardening process of cemented pastefill, Miner. Eng., 17(2004), No. 2, p. 141.

    CAS  Google Scholar 

  2. F. Cihangir, B. Ercikdi, A. Kesimal, H. Deveci, and F. Erdemir, Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties, Miner. Eng., 83(2015), p. 117.

    CAS  Google Scholar 

  3. S. Cao, W.D. Song, and E. Yilmaz, Influence of structural factors on uniaxial compressive strength of cemented tailings backfill, Constr. Build. Mater., 174(2018), p. 190.

    Google Scholar 

  4. C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025.

  5. L. Panda, P.K. Banerjee, S.K. Biswal, R. Venugopal, and N.R. Mandre, Performance evaluation for selectivity of the flocculant on hematite in selective flocculation, Int. J. Miner. Metall. Mater., 20(2013), No. 12, p. 1123.

    CAS  Google Scholar 

  6. M. Fall, D. Adrien, J.C. Célestin, M. Pokharel, and M. Touré, Saturated hydraulic conductivity of cemented paste backfill, Miner. Eng., 22(2009), No. 15, p. 1307.

    CAS  Google Scholar 

  7. Y. He, Q.S. Chen, C.C. Qi, Q.L. Zhang, and C.C. Xiao, Lithium slag and fly ash-based binder for cemented fine tailings backfill, J. Environ. Manage., 248(2019), art. No. 109282.

  8. Q.S. Chen, Q.L. Zhang, C.C. Qi, A. Fourie, and C.C. Xiao, Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact, J. Cleaner Prod., 186(2018), p. 418.

    CAS  Google Scholar 

  9. D.Q. Deng, L. Liu, Z.L. Yao, K.I.-I.L. Song, and D.Z. Lao, A practice of ultra-fine tailings disposal as filling material in a gold mine, J. Environ. Manage., 196(2017), p. 100.

    CAS  Google Scholar 

  10. Y. Wang, A.X. Wu, Z.E. Ruan, H.J. Wang, Y.M. Wang, and F. Jin, Temperature effects on rheological properties of fresh thickened copper tailings that contain cement, J. Chem., 2018(2018), art. No. 5082636.

  11. O. Nasir and M. Fall, Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages, Tunnelling Underground Space Technol., 25(2010), No. 1, p. 9.

    Google Scholar 

  12. D. Wu and S.J. Cai, Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill, J. Cent. South Univ., 22(2015), No. 5, p. 1956.

    CAS  Google Scholar 

  13. J.Y. Petit, E. Wirquin, and K.H. Khayat, Effect of temperature on the rheology of flowable mortars, Cem. Concr. Compos., 32(2010), No. 1, p. 43.

    CAS  Google Scholar 

  14. C.S.B. Fitzpatrick, E. Fradin, and J. Gregory, Temperature effects on flocculation, using different coagulants, Water Sci. Technol., 50(2004), No. 12, p. 171.

    CAS  Google Scholar 

  15. E. Burdukova, N. Ishida, T. Shaddick, and G.V. Franks, The size of particle aggregates produced by flocculation with PNIPAM, as a function of temperature, J. Colloid Interface Sci., 354(2011), No. 1, p. 82.

    CAS  Google Scholar 

  16. M.K.H. Winkler, J.P. Bassin, R. Kleerebezem, R.G.J.M. van der Lans, and M.C.M van Loosdrecht, Temperature and salt effects on settling velocity in granular sludge technology, Water Res., 46(2012), No. 12, p. 3897.

    CAS  Google Scholar 

  17. M. Rasmusson and B. Vincent, Flocculation of microgel particles, React. Funct. Polym., 58(2004), No. 3, p. 203.

    CAS  Google Scholar 

  18. G.Q. Qiao, J.F. Zhang, and Q.H. Zhang, Study on the influence of temperature to cohesive sediment flocculation, J. Sediment Res., 42(2017), No. 2, p. 35.

    Google Scholar 

  19. Y.Y. Wan, H.L. Wu, Q. Shen, and F.F. Gu, Experimental study on the settling velocity of suspended sediment in the Yangtze River Estuary, Mar. Sci., 39(2015), No. 8, p. 78.

    Google Scholar 

  20. Y. L. Lau, Temperature effect on settling velocity and deposition of cohesive sediments, J. Hydraul. Res., 32(1994), No. 1, p. 41.

    Google Scholar 

  21. T.S. Yang, X.Z. Xiong, X.L. Zhan, and M.Q. Yang, On flocculaton of cohesive fine sediment, Hydro-Sci. Eng., 2003, No. 2, p. 65.

  22. L. Botha and J.B.P. Soares, The influence of tailings composition on flocculation, Can. J. Chem. Eng., 93(2015), No. 9, p. 1514.

    CAS  Google Scholar 

  23. M. Fall, M. Benzaazoua, and S. Ouellet, Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill, Miner. Eng., 18(2005), No. 1, p. 41.

    CAS  Google Scholar 

  24. Y. Feng, J. Kero, Q.X. Yang, Q.S. Chen, F. Engström, C. Samuelsson, and C.C. Qi, Mechanical activation of granulated copper slag and its influence on hydration heat and compressive strength of blended cement, Materials, 12(2019), No. 5, p. 772.

    CAS  Google Scholar 

  25. Y. Feng, Q.X. Yang, Q.S. Chen, J. Kero, A. Andersson, H. Ahmed, F. Engström, and C. Samuelsson, Characterization and evaluation of the pozzolanic activity of granulated copper slag modified with CaO, J. Cleaner Prod., 232(2019), p. 1112.

    CAS  Google Scholar 

  26. M.T. Rodríguez and H. Pfeiffer, Sodium metasilicate (Na2SiO3): A thermo-kinetic analysis of its CO2 chemical sorption, Thermochim. Acta, 473(2008), No. 1–2, p. 92.

    Google Scholar 

  27. Y.K. Liu, Q.L. Zhang, Q.S. Chen, C.C. Qi, Z. Su, and Z.D. Huang, Utilisation of water-washing pre-treated phosphogypsum for cemented paste backfill, Minerals, 9(2019), No. 3, p. 175.

    CAS  Google Scholar 

  28. Q.S. Chen, Q.L. Zhang, A. Fourie, and C. Xin, Utilization of phosphogypsum and phosphate tailings for cemented paste backfill, J. Environ Manage., 201(2017), p. 19.

    CAS  Google Scholar 

  29. X.J. Xu, Principle of Chemical Flocculant, Science Press, Beijing, 2017, p. 86.

    Google Scholar 

  30. C. Eswaraiah, S.K. Biswal, and B.K. Mishra Settling characteristics of ultrafine iron ore slimes, Int. J. Miner. Metall. Mater., 19(2012), No. 2, p. 95.

    CAS  Google Scholar 

  31. A. Roshani, M. Fall, and K. Kennedy, Impact of drying on geo-environmental properties of mature fine tailings pre-dewatered with super absorbent polymer, Int. J. Environ. Sci. Technol., 14(2017), No. 3, p. 453.

    CAS  Google Scholar 

  32. J.H. Du, R.A. Pushkarova, and R.S.C. Smart, A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes, Int. J. Miner. Process., 93(2009), No. 1, p. 66.

    CAS  Google Scholar 

  33. R.K. Dwari and B.K. Mishra, Evaluation of flocculation characteristics of kaolinite dispersion system using guar gum: A green flocculant, Int. J. Min. Sci. Technol., 29(2019), No. 5, p. 745.

    CAS  Google Scholar 

  34. H. Li, M.X. Liu, and Q. Liu, The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector, Miner. Eng., 119(2018), p. 105.

    CAS  Google Scholar 

  35. S.M.R. Shaikh, M.S. Nasser, M. Magzoub, A. Benamor, I.A. Hussein, M.H. El-Naas, and H. Qiblawey, Effect of electrolytes on electrokinetics and flocculation behavior of bentonite-poly-acrylamide dispersions, Appl. Clay Sci., 158(2018), p. 46.

    CAS  Google Scholar 

  36. P.R. Suresha and M.V. Badiger, Flocculation of kaolin from aqueous suspension using low dosages of acrylamide-based cationic flocculants, J. Appl. Polym. Sci., 136(2018), No. 14, art. No. 47286.

  37. G. Trefalt, S.H. Behrens, and M. Borkovec, Charge regulation in the electrical double layer: Ion adsorption and surface interactions, Langmuir, 32(2016), No. 2, p. 380.

    CAS  Google Scholar 

  38. D. Ghernaout, A.I. Al-Ghonamy, A. Boucherit, B. Ghernaout, M.W. Naceur, N.A. Messaoudene, M. Aichouni, A.A. Mahjoubi, and N.A. Elboughdiri, Brownian motion and coagulation process, Am. J. Environ. Prot., 4(2015), No. 5–1, p. 1.

    CAS  Google Scholar 

  39. V. Vajihinejad, S.P. Gumfekar, B. Bazoubandi, Z.R. Najafabadi, and J.B.P. Soares, Water soluble polymer flocculants: Synthesis, characterization, and performance assessment, Macromol. Mater. Eng., 304(2019), No. 2, art. No. 1800526.

  40. Z.S. Liu, J. He, Q. Nie, J.X. Cui, Y. Xiao, L.Z. Zhao, and W.W. Xu, Studies of coagulation mechanism for sludge and sludge water, China Build. Mater. Sci. Technol., 24(2015), No. 6, p. 23.

    Google Scholar 

  41. E.M.V Hoek and G.K. Agarwal, Extended DLVO interactions between spherical particles and rough surfaces, J. Colloid Interface Sci., 298(2006), No. 1, p. 50.

    CAS  Google Scholar 

  42. R. Abhishek and A.A. Hamouda, Effect of various silica nano-fluids: Reduction of fines migrations and surface modification of berea sandstone, Appl. Sci., 7(2017), No. 12, p. 1216.

    Google Scholar 

  43. C.Y. Yang and Y.L. Ding, Multi-scale modelling of liquid suspensions of micron particles in the presence of nanoparticles, [in] L.Q. Wang, ed., Advances in Transport Phenomena 2010, Springer, Berlin, 2011, p. 295.

    Google Scholar 

  44. R.J. Zhang, Dynamics of River Sediments, China Water Power Press, Beijing, 1989, p. 20.

    Google Scholar 

  45. N.P. Chi, Research on Flocculation Detection Index Based on Fractal Dimension [Dissertation], Chongqing University, Chongqing, 2006, p. 30.

    Google Scholar 

  46. Y.X. Li, Analysis of half-life formula of particle concentration in flocculation kinetics, Chem. Water Supply Drain. Des., 1995, No. 2, p. 1.

  47. A. Sze, D. Erickson, L.Q. Ren, and D.Q. Li, Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow, J. Colloid Interface Sci., 261(2003), No. 2, p. 402.

    CAS  Google Scholar 

  48. E. Dickinsona and L. Erikssonb, Particle flocculation by adsorbing polymers, Adv. Colloid Interface Sci., 34(1991), p. 1.

    Google Scholar 

  49. S.P. Yeap and S.Y. Tia, Induced rapid magnetic sedimentation of stabilized-Fe3O4 nanoparticles by bridging and depletion flocculation, Chem. Eng. Res. Des., 142(2019), p. 53.

    CAS  Google Scholar 

  50. H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Cleaner Prod., 245(2020), art. No. 118882.

  51. D.R.L. Vedoy and J.B.P. Soares, Water-soluble polymers for oil sands tailing treatment: A review, Can. J. Chem. Eng., 93(2015), No. 5, p. 888.

    CAS  Google Scholar 

  52. S. Cao, E. Yilmaz, and W.D. Song, Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill, Minerals, 8(2018), No. 8, p. 352.

    Google Scholar 

  53. M. Dash, R.K. Dwari, S.K. Biswal, P.S.R. Reddy, P. Chattopadhyay, and B.K. Mishra, Studies on the effect of flocculant adsorption on the dewatering of iron ore tailings, Chem. Eng. J., 173(2011), No. 2, p. 318.

    CAS  Google Scholar 

  54. H. Wei, B.Q. Gao, J. Ren, A.M. Li, and H. Yang, Coagulation/flocculation in dewatering of sludge: A review, Water Res., 143(2018), p. 608.

    CAS  Google Scholar 

  55. M.B. Hocking, K.A. Klinchunk, and S. Lowen, Polymeric flocculants and flocculation, J. Macromol. Sci., Polym. Rev., 39(1999), No. 2, p. 177.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Laboratory of Safety and Health for Metal Mines, China (No. 2019-JSKSSYS-02) and the Natural Science Foundation of Hunan Province, China (No. 2020JJ5718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-song Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Dl., Zhang, Ql., Chen, Qs. et al. Temperature variation characteristics in flocculation settlement of tailings and its mechanism. Int J Miner Metall Mater 27, 1438–1448 (2020). https://doi.org/10.1007/s12613-020-2022-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2022-3

Keywords

Navigation