Skip to main content
Log in

Big data management in the mining industry

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

An Erratum to this article was published on 14 April 2020

This article has been updated

Abstract

The mining industry faces a number of challenges that promote the adoption of new technologies. Big data, which is driven by the accelerating progress of information and communication technology, is one of the promising technologies that can reshape the entire mining landscape. Despite numerous attempts to apply big data in the mining industry, fundamental problems of big data, especially big data management (BDM), in the mining industry persist. This paper aims to fill the gap by presenting the basics of BDM. This work provides a brief introduction to big data and BDM, and it discusses the challenges encountered by the mining industry to indicate the necessity of implementing big data. It also summarizes data sources in the mining industry and presents the potential benefits of big data to the mining industry. This work also envisions a future in which a global database project is established and big data is used together with other technologies (i.e., automation), supported by government policies and following international standards. This paper also outlines the precautions for the utilization of BDM in the mining industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 14 April 2020

    The original version of this article unfortunately contained two mistakes due to the PDF file conversion through different softwares. The presentation of Figs. 2 and 4 was incorrect. The correct versions are given below:

References

  1. A.G.N. Kitula, The environmental and socio-economic impacts of mining on local livelihoods in Tanzania: A case study of Geita District, J. Cleaner Prod., 14(2006), No. 3–4, p. 405.

    Article  Google Scholar 

  2. D. Ma, J.J. Wang, and Z.H. Li, Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar, Environ. Sci. Pollut. Res., 26(2019), No. 19, p. 19719.

    Article  Google Scholar 

  3. K. Peng, J.Q. Zhou, Q.L. Zou, J. Zhang, and F. Wu, Effects of stress lower limit during cyclic loading and unloading on deformation characteristics of sandstones, Constr. Build. Mater., 217(2019), p. 202.

    Article  Google Scholar 

  4. S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Cleaner Prod., 247(2020), art. No. 119590.

  5. H.Z. Jiao, S.F. Wang, A.X. Wu, H.M. Shen, and J.D. Wang, Cementitious property of NaAlO2-activated Ge slag as cement supplement, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1594.

    Article  CAS  Google Scholar 

  6. Y.Y. Tan, X. Yu, D. Elmo, L.H. Xu, and W.D. Song, Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 404.

    Article  CAS  Google Scholar 

  7. C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025.

  8. A. Azapagic, Developing a framework for sustainable development indicators for the mining and minerals industry, J. Cleaner Prod., 12(2004), No. 6, p. 639.

    Article  Google Scholar 

  9. J.A. Fekete, Big Data in Mining Operations [Dissertation], University of Copenhagen, Denmark, 2015, p. 71.

    Google Scholar 

  10. Y.J. Shen, Y.Z. Wang, Y. Yang, Q. Sun, T. Luo, and H. Zhang, Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface, Constr. Build. Mater., 213(2019), p. 156.

    Article  Google Scholar 

  11. V. Mayer-Schönberger and K. Cukier, Big Data: A Revolution That Will Transform How We Live, Work, and Think, Houghton Mifflin Harcourt, 2013.

  12. K.C. Ho, L.M. Collins, L.G. Huettel, and P.D. Gader, Discrimination mode processing for EMI and GPR sensors for hand-held land mine detection, IEEE Trans. Geosci. Remote Sens., 42(2004), No. 1, p. 249.

    Article  Google Scholar 

  13. C.C. Qi, A. Fourie, and Q.S. Chen, Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill, Constr. Build. Mater., 159(2018), p. 473.

    Article  Google Scholar 

  14. N. Attoh-Okine, Big data challenges in railway engineering, [in] 2014 IEEE International Conference on Big Data (Big Data), Washington, DC, 2014, p. 7.

  15. J.S. Ward and A. Barker, Undefined by data: a survey of big data definitions, arXiv preprint arXiv, 2013, art. No. 1309.5821.

  16. M. Bilal, L.O. Oyedele, J. Qadir, K. Munir, S.O. Ajayi, O.O. Akinade, H.A. Owolabi, H.A. Alaka, and M. Pasha, Big Data in the construction industry: A review of present status, opportunities, and future trends, Adv. Eng. Inf., 30(2016), No. 3, p. 500.

    Article  Google Scholar 

  17. O. Kapliński, N. Košeleva, and G. Ropaitė, Big Data in civil engineering: A state-of-the-art survey, Eng. Struct. Technol., 8(2016), No. 4, p. 165.

    Article  Google Scholar 

  18. D. Singh and C.K. Reddy, A survey on platforms for big data analytics, J. Big Data, 2(2015), No. 1, p. 8.

    Article  Google Scholar 

  19. M. Hasanipanah, D.J. Armaghani, M. Monjezi, and S. Shams, Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system, Environ. Earth Sci., 75(2016), No. 9, p. 808.

    Article  Google Scholar 

  20. D.J. Armaghani, A. Mahdiyar, M. Hasanipanah, R.S. Faradonbeh, M. Khandelwal, and H.B. Amnieh, Risk assessment and prediction of flyrock distance by combined multiple regression analysis and monte carlo simulation of quarry blasting, Rock Mech. Rock Eng., 49(2016), No. 9, p. 3631.

    Article  Google Scholar 

  21. D.J. Armaghani, E.T. Mohamad, M.S. Narayanasamy, N. Narita, and S. Yagiz, Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition, Tunnelling Underground Space Technol., 63(2017), p. 29.

    Article  Google Scholar 

  22. X. Lu, M. Hasanipanah, K. Brindhadevi, H.B. Amnieh, and S. Khalafi, ORELM: A novel machine learning approach for prediction of flyrock in mine blasting, Nat. Resour. Res., 2019, p. 1.

  23. B. King, M. Goycoolea, and A. Newman, Optimizing the open pit-to-underground mining transition, Eur. J. Oper. Res., 257(2017), No. 1, p. 297.

    Article  Google Scholar 

  24. H.J. Lu, C.C. Qi, Q.S. Chen, D.Q. Gan, Z.L. Xue, and Y.J. Hu, A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits, J. Cleaner Prod., 188(2018), p. 601.

    Article  Google Scholar 

  25. L. Liu, C. Zhu, C.C. Qi, M. Wang, C. Huan, B. Zhang, and K.I. Song, Effects of curing time and ice-to-water ratio on performance of cemented paste backfill containing ice slag, Constr. Build. Mater., 228(2019), art. No. 116639.

  26. R.H.E.M. Koppelaar and H. Koppelaar, The ore grade and depth influence on copper energy inputs, Biophys. Econ. Resour. Qual., 1(2016), No. 2, p. 11.

    Article  Google Scholar 

  27. Z.Y. Song, D.X. Niu, and X.L. Xiao, Focus on the current competitiveness of coal industry in China: Has the depression time gone?, Resour. Policy, 51(2017), p. 172.

    Article  Google Scholar 

  28. A. Lane, J. Guzek, and W. Van Antwerpen, Tough choices facing the South African mining industry, J. South Afr. Inst. Min. Metall., 115(2015), No. 6, p. 471.

    Google Scholar 

  29. S. Lozeva and D. Marinova, Negotiating gender: Experience from Western Australian mining industry, J. Econ. Soc. Policy, 13(2010), No. 2, p. 7.

    Google Scholar 

  30. F. Provost and T. Fawcett, Data Science for Business: What You Need to Know About Data Mining and Data-Analytic Thinking, O’Reilly Media, Inc., Sebastopol, 2013.

    Google Scholar 

  31. T. White, Hadoop: The definitive guide, O’Reilly Media, Inc., Sebastopol, 2012.

    Google Scholar 

  32. P. Helland, If you have too much data, then ‘good enough’ is good enough, Commun. ACM, 54(2011), No. 6, p. 40.

    Article  Google Scholar 

  33. C.Q. Ji, Y. Li, W.M. Qiu, U. Awada, and K.Q. Li, Big data processing in cloud computing environments, [in] 2012 12th International Symposium on Pervasive Systems, Algorithms and Networks, San Marcos, TX, 2012, p. 17.

  34. S. Lee and Y. Choi, Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry, Geosyst. Eng., 19(2016), No. 4, p. 197.

    Article  CAS  Google Scholar 

  35. P. Baumann, P. Mazzetti, J. Ungar, et al., Big data analytics for earth sciences: the EarthServer approach, Int. J. Digital Earth, 9(2016), No. 1, p. 3.

    Article  Google Scholar 

  36. S.H. Zhang, K.Y. Xiao, Y.S. Zhu, and N. Cui, A prediction model for important mineral resources in China, Ore Geol. Rev., 91(2017), p. 1094.

    Article  Google Scholar 

  37. J. Bughin, M. Chui, and J. Manyika, Clouds, big data, and smart assets: Ten tech-enabled business trends to watch, McKinsey Q., 56(2010), No. 1, p. 75.

    Google Scholar 

  38. J. Ralston, D. Reid, C. Hargrave, and D. Hainsworth, Sensing for advancing mining automation capability: A review of underground automation technology development, Int. J. Min. Sci. Technol., 24(2014), No. 3, p. 305.

    Article  Google Scholar 

  39. D. Reid and A. Fourie, Geotechnical effects of polymer treatment on tailings-state of knowledge review, [in] Proceedings of the 21st International Seminar on Paste and Thickened Tailings, Perth, 2018, p. 263.

  40. J.C. Bertot and H. Choi, Big data and e-government: issues, policies, and recommendations, [in] Proceedings of the 14th Annual International Conference on Digital Government Research, ACM, Quebec, 2013, p. 1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-chong Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Cc. Big data management in the mining industry. Int J Miner Metall Mater 27, 131–139 (2020). https://doi.org/10.1007/s12613-019-1937-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1937-z

Keywords

Navigation