Hydroxylated graphene quantum dots as fluorescent probes for sensitive detection of metal ions

  • Qiang Ge
  • Wen-hui Kong
  • Xin-qian Liu
  • Ying-min Wang
  • Li-feng Wang
  • Ning Ma
  • Yan LiEmail author


Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater. Here, we developed a new probe for the determination of metal ions by fluorescence quenching. The probe consists of hydroxylated graphene quantum dots (H-GQDs), prepared from GQDs by electrochemical method followed by surface hydroxylation. It is a non-reactive indicator with high sensitivity and detection limits of 0.01 μM for Cu2+, 0.005 μM for Al3+, 0.04 μM for Fe3+, and 0.02 μM for Cr3+. In addition, the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.


graphene quantum dots surface hydroxylation metal ions detection fluorescent probes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 21674011) and Beijing Municipal Natural Science Foundation (No. 2172040).


  1. [1]
    B. Li, Z.S. He, H.X. Zhou, H. Zhang, W. Li, T.Y. Cheng, and G.H. Liu, Reaction based colorimetric and fuorescence probes for selective detection of hydrazine, Dyes Pigm., 146(2017), p. 300.CrossRefGoogle Scholar
  2. [2]
    J. Yao, M. Yang, and Y.X. Duan, Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: newinsights into biosensing, bioimaging, genomics, dagnostics, and therapy, Chem. Rev., 114(2014), No. 12, p. 6130.CrossRefGoogle Scholar
  3. [3]
    A.T. Aron, A.G. Reeves, and C.J. Chang, Activity-based sensing fluorescent probes for iron in biological systems, Curr. Opin. Chem. Biol, 43(2018), p. 113.CrossRefGoogle Scholar
  4. [4]
    D.J. Cho and J.L. Sessler, Modern reaction-based indicator systems, Chem. Soc. Rev., 38(2009), No. 6, p. 1647.CrossRefGoogle Scholar
  5. [5]
    P. Roy, P.C. Chen, A.P. Periasamy, Y.N. Chen, and H.T. Chang, Photoluminescent carbon nanodots: Synthesis, physicochemical properties and analytical applications, Mater. Today, 18(2014), No. 8, p. 447.CrossRefGoogle Scholar
  6. [6]
    J. Wen, Y.Q. Xu, H.J. Li, A.P. Lu, and S.G. Sun, Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging, Chem. Commun., 51(2015), No. 57, p. 11346.CrossRefGoogle Scholar
  7. [7]
    Y.B. Song, S.J. Zhu, and B. Yang, Bioimaging based on fluorescent carbon dots, RSC Adv., 4(2014), No. 52, p. 27184.CrossRefGoogle Scholar
  8. [8]
    L.P. Lin, X.H. Song, YY. Chen, M.C. Rong, Y.R. Wang, L. Zhao, T.T. Zhao, and X. Chen, Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu2+ and l-cysteine, Anal. Chim. Acta, 891(2015), p. 261.CrossRefGoogle Scholar
  9. [9]
    Y. Li, X.Q. Liu, Q.Y. Li, J. Ge, H. Liu, S. Li, L.F. Wang, J. Wang, and N. Ma, Post-oxidation treated graphene quantum dots as a fluorescent probe for sensitive detection of copper ions, Chem. Phys. Lett., 664(2016), p. 127.CrossRefGoogle Scholar
  10. [10]
    X.C. Fu, J.Z. Jin, J. Wu, J.C. Jin, and CG. Xie, A novel “turn-on” fluorescence sensor for high selectively detecting Al (III) in aqueous solution based on simple electrochemical synthesized carbon dots, Anal Methods, 9(2017), No. 26, p. 3941.CrossRefGoogle Scholar
  11. [11]
    KG. Qu, J.S. Wang, J.S. Ren, and XG. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine, Chem. Eur. J., 19(2013), No. 22, p. 7243.CrossRefGoogle Scholar
  12. [12]
    B.J. Wang, S.J. Zhuo, L.Y. Chen, and Y.J. Zhang, Fluorescent graphene quantum dot nanoprobes for the sensitive and selective detection of mercury ions, Spectrochim. Acta Part A, 131(2014), p. 384.CrossRefGoogle Scholar
  13. [13]
    S. Sharma, A. Umar, S.K. Mehta, and S.K. Kansal, Fluorescent spongy carbon nanoglobules derived from pineapple juice: A potential sensing probe for specific and selective detection of chromium (VI) ions, Ceram. Int., 43(2017), No. 9, p. 7011.CrossRefGoogle Scholar
  14. [14]
    FX. Wang, ZY. Gu, W. Lei, W.J. Wang, X.F. Xia, and Q.L. Hao, Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions, Sens. Actuators B, 190(2014), p. 516.CrossRefGoogle Scholar
  15. [15]
    X.F. Niu, Y.B. Zhong, R. Chen, F. Wang, Y.J. Liu, and D. Luo, A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles, Sens. Actuators B, 255(2018), p. 1577.CrossRefGoogle Scholar
  16. [16]
    S.H. Zhou, H.B. Xu, W. Gan, and Q.H. Yuan, Graphene quantum dots: Recent progress in preparation and fluorescence sensing applications, RSC Adv., 6(2016), No. 112, p. 110775.CrossRefGoogle Scholar
  17. [17]
    S.J. Zhu, J.H. Zhang, C.Y. Qiao, S.J. Tang, Y.F. Li, W.J. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H.N. Gao, H.T. Wei, H. Zhang, H.C. Sun, and B. Yang, Strongly green-photolu-minescent graphene quantum dots for bioimaging applications, Chem. Commun., 47(2011), No. 24, p. 6858.CrossRefGoogle Scholar
  18. [18]
    Y.Q. Feng, J.P. Zhao, X.B. Yan, F.L. Tang, and Q.J. Xue, Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction, Carbon, 66(2014), No. 1, p. 334.CrossRefGoogle Scholar
  19. [19]
    Z.S. Qian, XY. Shan, L.J. Chai, J.R. Chen, and H. Feng, A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion, Biosens. Bioelectron., 68(2015), p. 225.CrossRefGoogle Scholar
  20. [20]
    Y. Li, X.Q. Liu, J. Wang, H. Liu, S. Li, Y.B. Hou, W. Wan, W.D. Xue, N. Ma, and J.Z. Zhang, Chemical nature of redox-controlled photoluminescence of graphene quantum dots by post-synthesis treatment, J. Phys. Chem. C, 120(2016), No. 45, p. 26004.CrossRefGoogle Scholar
  21. [21]
    Y. Li, H. Liu, X.Q. Liu, S. Li, L.F. Wang, N. Ma, and D.L. Qiu, Free-radical-assisted rapid synthesis of graphene quantum dots and their oxidizability studies, Langmur, 32(2016), No. 34, p. 8641.CrossRefGoogle Scholar
  22. [22]
    P.H. Luo, Y. Qiu, X.F. Guan, and L.Q. Jiang, Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment, Phys. Chem. Chem. Phys., 16(2014), No. 35, p. 19011.CrossRefGoogle Scholar
  23. [23]
    S.J. Zhu, J.H. Zhang, S.J. Tang, CY. Qiao, L. Wang, HY. Wang, X. Liu, B. Li, Y.F. Li, W.L. Yu, X.F. Wang, H.C. Sun, and B. Yang, Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications, Adv. Funct. Mater., 22(2012), No. 22, p. 4732.CrossRefGoogle Scholar
  24. [24]
    L.L. Li, G.H. Wu, G.H. Yang, J. Peng, J.W. Zhao, and J.J. Zhu, Focusing on luminescent graphene quantum dots: Current status and future perspectives, Nanoscale, 10(2013), No. 5, p. 4015.CrossRefGoogle Scholar
  25. [25]
    S.L. Hu, A. Trinchi, P. Atkin, and I. Cole, Tunable photolu-minescence across the entire visible spectrum from carbon dots excited by white light, Angew. Chem. Int. Ed, 54(2015), No. 10, p. 2970.CrossRefGoogle Scholar
  26. [26]
    T.J. Fan, W.J. Zeng, W. Tang, C.Q. Yuan, S.Z. Tong, KY. Cai, Y.D. Liu, W. Huang, Y. Min, and A.J. Epstein, Controllable size-selective method to prepare graphene quantum dots from graphene oxide, Nanoscale Res. Lett, 10(2015), No. 19, p. 55.CrossRefGoogle Scholar
  27. [27]
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Ed., Springer Science+Business Media, LLC, New York, 2006.CrossRefGoogle Scholar
  28. [28]
    C.Q. Zhang, Y. Yan, Q.H. Pan, L.B. Sun, H.M. He, Y.L. Liu, Z.Q. Liang, and JY. Li, A microporous lanthanum metal-organic framework as a bi-functional chemosensor for the detection of picric acid and Fe3+ ions, Dalton Trans., 44(2015), No. 29, p. 13340.CrossRefGoogle Scholar
  29. [29]
    X.H. Zhou, L. Li, H.H. Li, A. Li, T. Yang, and W. Huang, A flexible Eu(III)-based metal-organic framework: Turn-offluminescent sensor for the detection of Fe(III) and picric acid, Dalton Trans., 42(2013), No. 34, p. 12403.CrossRefGoogle Scholar
  30. [30]
    X.Q. Dong, C.L. Li, J. Li, W.T. Huang, J. Wang, and R.B. Liao, Application of a system dynamics approach for assessment of the impact of regulations on cleaner production in the electroplating industry in China, J. Cleaner Prod, 20(2012), No. 1, p. 72.CrossRefGoogle Scholar
  31. [31]
    L. Shi, J.S. Shi, and Y. Shi, Discussion on the emission standard of pollutants for electroplating, Electroplat. Finish., 28(2009), No. 5, p. 44.Google Scholar
  32. [32]
    C. Shen, SY. Ge, YY. Pang, F.N. Xi, J.Y. Liu, X.P. Dong, and P. Chen, Facile and scalable preparation of highly luminescent N,S co-doped graphene quantum dots and their application for parallel detection of multiple metal ions, J. Mater. Chem. B, 5(2017), No. 32, p. 6593.CrossRefGoogle Scholar
  33. [33]
    X.F. Liu, W. Gao, X.M. Zhou, and YY. Ma, Pristine graphene quantum dots for detection of copper ions, J. Mater. Res., 29(2014), No. 13, p. 1401.CrossRefGoogle Scholar
  34. [34]
    V. Dujols, F. Ford, and AW. Czarnik, A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water, J. Am. Chem. Soc, 119(1997), No. 31, p. 7386.CrossRefGoogle Scholar
  35. [35]
    L. F an, J.C. Qin, T.R. Li, B.D. Wang, and ZY. Yang, A novel rhodamine chromone-based “Off-On” chemo sensor for the differential detection of Al(III) and Zn(II) in aqueous solutions, Sens. Actuators B, 203(2014), No. 14, p. 550.CrossRefGoogle Scholar
  36. [36]
    D. Wang, L. Wang, XY. Dong, Z. Shi, and J. Jin, Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection, Carbon, 50(2012), No. 6, p. 2147.CrossRefGoogle Scholar
  37. [37]
    J. Ju and W. Chen, Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media, Biosens. Bioelectron., 58(2014), p. 219.CrossRefGoogle Scholar
  38. [38]
    C. Yi, WW. Tian, B. Song, Y.P. Zheng, Z.J. Qi, Q. Qi, and Y.M. Sun, A new turn-offfluorescent chemosensor for iron (III) based on new diphenylfluorenes with phosphonic acid, J. Lumin., 141(2013), p. 15.CrossRefGoogle Scholar
  39. [39]
    L.Q Liu, Y.F Li, L. Zhan, Y. Liu, and C.Z. Huang, One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions, Sci. China Chem., 54(2011), No. 8, p. 1342.CrossRefGoogle Scholar
  40. [40]
    Y.F. Chen, C.L. Kao, P.C. Huang, CY. Hsu, and C.H. Kuei, Facile synthesis of multi-responsive functional graphene quantum dots for sensing metal cations, RSC Adv., 6(2016), No. 105, p. 103006.CrossRefGoogle Scholar
  41. [41]
    J.W. Xin, L.J. Mao, SG. Chen, and A.G. Wu, Colorimetric detection of Cr3+ using tripolyphosphate modified gold nanoparticles in aqueous solutions, Anal. Methods, 4(2012), No. 5, p. 1259.CrossRefGoogle Scholar
  42. [42]
    H. Huang, Y.H. Weng, L.H. Zheng, BX. Yao, W. Weng, and X.C. Lin, Nitrogen-doped carbon quantum dots as fluorescent probe for “off-on” detection of mercury ions, L-cysteine and iodide ions, J. Colloid Interface Sci, 506(2017), p. 373.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Qiang Ge
    • 1
  • Wen-hui Kong
    • 1
  • Xin-qian Liu
    • 1
  • Ying-min Wang
    • 1
  • Li-feng Wang
    • 1
  • Ning Ma
    • 2
  • Yan Li
    • 1
    Email author
  1. 1.Department of Inorganic Nonmetallic Material, School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations