Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys

  • A. AlbedahEmail author
  • B. Bachir Bouiadjra
  • S. M. A. K. Mohammed
  • F. Benyahia


The effect of single overload on the fatigue crack growth in 2024-T3 and 7075-T6 Al alloys was analyzed. Fatigue tests under constant-amplitude loading with overload peak were carried out on V-notched specimens. Fractographic analysis was used as a principal approach to explain the crack growth retardation due to the overload. Scanning electron microscopy (SEM) analyses were conducted on the fractured surface of failed specimens to study the retardation effect. The obtained results show that the overload application generates a plastic zone in both aluminum alloys. The generated plastic zone is three times larger in the case of 2024-T3 compared to 7075-T6, and thus, a significant crack retardation was induced for 2024-T3. The retardation effect due to the overload for 2024-T3 and 7075-T6 lasted for about 10 mm and 1 mm, respectively, from the point of overload application.


fatigue crack growth overload retardation fractography crack tip plasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group (No. RGP-VPP-035).


  1. [1]
    P. Dai, S. Li, and Z.H. Li, The effects of overload on the fatigue crack growth in ductile materials predicted by plasticity-corrected stress intensity factor, Eng. Fract. Mech., 111(2013), p. 26.CrossRefGoogle Scholar
  2. [2]
    B.J.P. Belnoue, T.S. Jun, F. Hofmann, B. Abbey, and A.M. Korsunsky, Evaluation of the overload effect on fatigue crack growth with the help of synchrotron XRD strain mapping, Eng. Fract. Mech., 77(2010), No. 16, p. 3216.CrossRefGoogle Scholar
  3. [3]
    A. Arcari and N.E. Dowling, Modeling mean stress relaxation in variable amplitude loading for 7075-T6511 and 7249-T76511 high strength aluminium alloys, Int. J. Fatigue, 42(2012), p. 238.CrossRefGoogle Scholar
  4. [4]
    Z.Y. Ding, X.G. Wang, Z.L. Gao, and S.Y. Bao, An experimental investigation and prediction of fatigue crack growth under overload/underload in Q345R steel, Int. J. Fatigue, 98(2017), p. 155.CrossRefGoogle Scholar
  5. [5]
    S.C. Li, Y.H. Zhang, L. Qi, and Y.L. Kang, Effect of single tensile overload on fatigue crack growth behavior in DP780 dual phase steel, Int. J. Fatigue, 106(2018), p. 49.CrossRefGoogle Scholar
  6. [6]
    J. Saarimäki, J. Moverare, R. Eriksson, and S. Johansson, Influence of overloads on dwell time fatigue crack growth in Inconel718, Mater. Sci. Eng. A, 612(2014), p. 398.CrossRefGoogle Scholar
  7. [7]
    S.M. Beden, S. Abdullah, A.K. Ariffin, and N.A. Al-Asady, Fatigue crack growth simulation of aluminium alloy under spectrum loadings, Mater. Des., 31(2010), No. 7, p. 3449.CrossRefGoogle Scholar
  8. [8]
    S. Mikheevskiy, S. Bogdanov, and G. Glinka, Analysis of fatigue crack growth under spectrum loading — The UniGrow fatigue crack growth model, Theor. Appl. Fract. Mech., 79(2015), p. 25.CrossRefGoogle Scholar
  9. [9]
    A. Albedah, S.M. Khan, B. Bouiadjra, and F. Benyahia, Fatigue crack propagation in aluminum plates with composite patch including plasticity effect, Proceedings of the Institution of Mechanical Engineers. Part G: Journal of Aerospace Engineering, 232(2017), No. 11, p. 2122.CrossRefGoogle Scholar
  10. [10]
    B.B. Verma, A. Kumar, and P.K. Ray, Fatigue crack growth delay following overload, Trans. Indian Inst. Met., 53(2000), No. 6, p. 291.Google Scholar
  11. [11]
    A.J. McEvily, S. Ishikawa, and C. Makabe, The influence of the baseline R value on the extent of retardation after an overload, [in] Mechanism and Mechanics of Fracture: The John Knott Symposium, Columbus, 2002. p. 37.Google Scholar
  12. [12]
    C.M. Ward-Close, A.F. Blom, and R.O. Ritchie, Mechanisms associated with transient fatigue crack growth under variable-amplitude loading: An experimental and numerical study, Eng. Fract. Mech., 32(1989), No. 4, p. 613.CrossRefGoogle Scholar
  13. [13]
    M.J. Doré and S.J. Maddox, Accelerated fatigue crack growth in 6082-T651 aluminium alloy subjected to periodic underloads, Procedia Eng., 66(2013), p. 313.CrossRefGoogle Scholar
  14. [14]
    I.S. Putra and J. Schijve, Crack opening stress measurements of surface cracks in 7075-T6 Al alloy plate specimens through electron fractography, Fatigue Fract. Eng. Mater. Struct., 15(1992), p. 323.CrossRefGoogle Scholar
  15. [15]
    M.N. James and A.E. Paterson, Fatigue performance of 6261-T6 aluminium alloy — constant and variable amplitude loading of parent plate and welded specimens, Int. J. Fatigue, 19(1997), No. 93, p. 109.CrossRefGoogle Scholar
  16. [16]
    M. Benachour, A. Hadjoui, M. Benguediab, and N. Benachour, Effect of the amplitude loading on fatigue crack growth, Procedia Eng., 2(2010), No. 1, p. 121.CrossRefGoogle Scholar
  17. [17]
    P.K. Liaw, T.R. Leax, and W.A. Logsdon, Near threshold fatigue crack growth behavior in metals, Acta Metall., 31(1983), No. 10, p. 1581.CrossRefGoogle Scholar
  18. [18]
    K.W. Jones and M.L. Dunn, Fatigue crack growth through a residual stress field introduced by plastic beam bending, Fatigue Fract. Eng. Mater. Struct., 31(2008), No. 10, p. 863.CrossRefGoogle Scholar
  19. [19]
    N. Ranganathan, Certain issues in variable amplitude fatigue, Procedia Eng., 101(2015), p. 404.CrossRefGoogle Scholar
  20. [20]
    J. Schijve, The significance of fractography for investigations of fatigue crack growth under variable-amplitude loading, Fatigue Fract. Eng. Mater. Struct., 22(1999), p. 87.CrossRefGoogle Scholar
  21. [21]
    J. Schijve, The application of small overloads for fractography of small fatigue cracks initiated under constantamplitude loading, Int. J. Fatigue, 70(2015), p. 63.CrossRefGoogle Scholar
  22. [22]
    Annual Book of ASTM Standards, Standard A. E647: Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, 2000, p. 628.Google Scholar
  23. [23]
    Y. Murakami, Stress Intensity Factors Handbook, Pergamon Press, Oxford, 1987, p. 9.Google Scholar
  24. [24]
    S. Datta, A. Chattopadhyay, N. Iyyer, and N. Phan, Fatigue crack propagation under biaxial fatigue loading with single overloads, Int. J. Fatigue, 109(2018), p. 103.CrossRefGoogle Scholar
  25. [25]
    M. Skorupa, Load interaction effects during fatigue crack growth under variable amplitude loading — A literature review. Part I: empirical trends, Fatigue Fract. Eng. Mater. Struct., 21(1998), p. 987.CrossRefGoogle Scholar
  26. [26]
    S.M.A.K. Mohammed, A. Albedah, F. Benyahia, and B.B. Bouiadjra, Effect of single tensile peak overload on the performance of bonded composite repair of cracked Al 2024- T3 and Al 7075-T6 plates, Compos. Struct., 193(2018), p. 260.CrossRefGoogle Scholar
  27. [27]
    S.M.A.K. Mohammed, B.B. Bouiadjra, F. Benyahia, and A. Albedah, Analysis of the single overload effect on fatigue crack growth in AA 2024-T3 plates repaired with composite patch, Eng. Fract. Mech., 202(2018), p. 147.CrossRefGoogle Scholar
  28. [28]
    T.W. Zhao, J.X. Zhang, and Y.Y. Jiang, A study of fatigue crack growth of 7075-T651 aluminum alloy, Int. J. Fatigue, 30(2008), No. 7, p. 1169.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • A. Albedah
    • 1
    Email author
  • B. Bachir Bouiadjra
    • 1
    • 2
  • S. M. A. K. Mohammed
    • 1
    • 3
  • F. Benyahia
    • 1
  1. 1.Mechanical Engineering Department, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  2. 2.LMPM, Department of Mechanical EngineeringUniversity of Sidi Bel AbbesSidi Bel AbbesAlgeria
  3. 3.Department of Mechanical and Industrial EngineeringRyerson UniversityTorontoCanada

Personalised recommendations