Advertisement

Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production

  • Fabiane Carvalho Ballotin
  • Mayra Nascimento
  • Sara Silveira Vieira
  • Alexandre Carvalho Bertoli
  • Ottávio Carmignano
  • Ana Paula de Carvalho Teixeira
  • Rochel Montero LagoEmail author
Article
  • 2 Downloads

Abstract

In this work, different magnesium silicate mineral samples based on antigorite, lizardite, chrysotile (which have the same general formula Mg3Si2O5(OH)4), and talc (Mg3Si4O10(OH)2) were reacted with KOH to prepare catalysts for biodiesel production. Simple impregnation with 20wt% K and treatment at 700-900°C led to a solid-state reaction to mainly form the K2MgSi04 phase in all samples. These results indicate that the K ion can diffuse into the different Mg silicate structures and textures, likely through intercalation in the interlayer space of the different mineral samples followed by dehydroxylation and K2MgSi04 formation. All the materials showed catalytic activity for the transesterification of soybean oil (1:6 of oil: methanol molar ratio, 5wt% of catalyst, 60°C). However, the best results were obtained for the antigorite and chrysotile precursors, which are discussed in terms of mineral structure and the more efficient formation of the active phase K2MgSi04.

Keywords

silicate serpentinite lizardite antigorite talc chrysotile biodiesel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge Pedras Congonhas LTDA for the samples, the UFMG microscopy center for the images and the support of CNPQ, INCT Midas, CAPES and FAPEMIG.

References

  1. [1]
    A.L. Auzende, I. Daniel, B. Reynard, C. Lemaire, and F. Guyot, High-pressure behavior of serpentine minerals: A Raman spectroscopic study, Phys. Chem. Miner., 31(2004), No. 5, p. 269.CrossRefGoogle Scholar
  2. [2]
    S. Guillot, S. Schwartz, B. Reynard, P. Agard, and C. Prigent, Tectonic significance of serpentinites, Tectonophysics, 646(2015), p. 1.CrossRefGoogle Scholar
  3. [3]
    B.W. Evans, K. Hattori, and A. Baronnet, Serpentinite: what, why, where? Elements, 9(2013), No. 2, p. 99.CrossRefGoogle Scholar
  4. [4]
    B.T. Mossman, J. Bignon, M. Corn, A. Seaton, and J.B. Gee, Asbestos: scientific developments and implications for public policy, Science, 247(1990), No. 4940, p. 294.CrossRefGoogle Scholar
  5. [5]
    G.C. Capitani and M. Mellini, The crystal structure of a second antigorite polysome (m = 16), by single-crystal synchrotron diffraction, Am. Mineral., 91(2006), No. 2–3, p. 394.CrossRefGoogle Scholar
  6. [6]
    M. Claverie, A. Dumas, C. Careme, M. Poirier, C. Le Roux, P. Micoud, F. Martin, and C. Aymonier, Synthetic talc and talc-like structures: Preparation, features and applications, Chemistry, 24(2018), No. 3, p. 519.CrossRefGoogle Scholar
  7. [7]
    S.S. Vieira, G.M. Paz, A.P.C. Teixeira, E.M. Moura, O.R. Carmignano, R.C.O. Sebastiao, and R.M. Lago, Solid state reaction of serpentinite Mg3Si2O5(OH)4 with Li+ to produce Li4SiO4/MgO composites for the efficient capture of CO2, J. Environ. Chem. Eng., 6(2018), No. 4, p. 4189.CrossRefGoogle Scholar
  8. [8]
    G.M. Paz, S.S. Vieira, A.C. Bertoli, F.C. Ballotin, E.M. de Moura, A.P.C. Teixeira, D. Costa, O. Carmignano, and R.M. Lago, Solid state reaction of serpentinite Mg3Si2O5(OH)4 with NaOH to produce a new basic catalytic phase Na2Mg2Si2O7 for biodiesel production, J. Braz. Chem. Soc, 29(2018), No. 9, p. 1823.Google Scholar
  9. [9]
    F.C. Ballotin, T.E. Cibaka, T.A. Ribeiro-Santos, E.M. Santos, AP. de Carvalho Teixeira, and R.M. Lago, K2MgSiO4: A novel K+-trapped biodiesel heterogeneous catalyst produced from serpentinite Mg3Si2O5(OH)4, J. Mol. Catal. A: Chem., 422(2016), p. 258.CrossRefGoogle Scholar
  10. [10]
    U. Schuchardt, R. Sercheli, and R.M. Vargas, Transesterification of vegetable oils: A review, J. Braz. Chem. Soc, 9(1998), No. 3, p. 199.CrossRefGoogle Scholar
  11. [11]
    A.P.C. Teixeira, E.M. Santos, A.F.P. Vieira, and R.M. Lago, Use of chrysotile to produce highly dispersed K-doped MgO catalyst for biodiesel synthesis, Chem. Eng. J., 232(2013), p. 104.CrossRefGoogle Scholar
  12. [12]
    A. Shakoor and N.L. Thomas, Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites, Pofym. Eng. Sci., 54(2014), No. 1, p. 64.Google Scholar
  13. [13]
    R.G. Coleman, Petrologic and geophysical nature of serpentinites, Geol. Soc. Am. Bull, 82(1971), No. 4, p. 897.CrossRefGoogle Scholar
  14. [14]
    M. Wesolowski, Thermal decomposition of talc: A review, Thermochim. Acta, 78(1984), No. 1–3, p. 395.CrossRefGoogle Scholar
  15. [15]
    M.D. Menzel, C.J. Garrido, V.L. Sanchez-Vizcaino, C. Marchesi, K. Hidas, M.P. Escayola, and A.D. Huertas, Carbonation of mantle peridotite by CO2-rich fluids: The formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada), Lithos, 323(2018), p. 238.CrossRefGoogle Scholar
  16. [16]
    X. Liu, X. Liu, and Y. Hu, Investigation of the thermal decomposition of talc, Clays Clay Miner., 62(2014), No. 2, p. 137.CrossRefGoogle Scholar
  17. [17]
    C. Viti, Serpentine minerals discrimination by thermal analysis, Am. Mineral, 95(2010), No. 4, p. 631.CrossRefGoogle Scholar
  18. [18]
    H. Maleki, M. Kazemeini, and F. Bastan, Transesterification of canola oil to biodiesel using CaO/Talc nanopowder as a mixed oxide catalyst, Chem. Eng. Technol, 40(2017), No. 10, p. 1923.CrossRefGoogle Scholar
  19. [19]
    A.F. Gualtieri, N.B. Gandolfi, S. Pollastri, M. Burghammer, E. Tibaldi, F. Belpoggi, K. Pollok, F. Langenhorst, R. Vigliaturo, and G. Drazic, New insights into the toxicity of mineral fibers: A combined in situ synchrotron μ-XRD and HR-TEM study of chrysotile, crocidolite, and erionite fibers found in the tissues of Sprague-Dawley rats, Toxicol. Lett, 274(2017), p. 20.CrossRefGoogle Scholar
  20. [20]
    CM. Yarborough, The risk of mesothelioma from exposure to chrysotile asbestos, Curr. Opin. Pulm. Med., 13(2007), No. 4, p. 334.CrossRefGoogle Scholar
  21. [21]
    B. Ersoy, S. Dikmen, A. Yildiz, R. Gören, and Ö. Elitok, Mineralogical and physicochemical properties of talc from Emirdağ, Afyonkarahisar, Turk. J. Earth Sci., 22(2013), No. 4, p. 632.Google Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Fabiane Carvalho Ballotin
    • 1
  • Mayra Nascimento
    • 1
  • Sara Silveira Vieira
    • 1
  • Alexandre Carvalho Bertoli
    • 1
  • Ottávio Carmignano
    • 2
  • Ana Paula de Carvalho Teixeira
    • 1
  • Rochel Montero Lago
    • 1
    Email author
  1. 1.Departamento de QuímicaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
  2. 2.Doutorado Inovação/Mineradora Pedras CongonhasUniversidade Federal de Minas GeraisBelo Horizonte-MGBrazil

Personalised recommendations