Skip to main content
Log in

Experimental investigation of the cyclic degradation of the one-way shape memory effect of NiTi alloys

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Based on stress- and strain-controlled cyclic tension-unloading-heat-cooling tests, cyclic degradation of the one-way shape memory effect (OWSME) of NiTi shape memory alloys (SMAs) was investigated. It was seen, in thermo-mechanical coupled cyclic tests, that residual strain after each cycle accumulated, but the martensite reorientation stress and dissipation energy-per-cycle decreased as the number of cycles increased. Meanwhile, the cyclic degradation of OWSME was aggravated by increasing the stress/strain amplitude. In addition, the stress-strain response of NiTi SMAs was further investigated by performing simultaneous thermo-mechanical coupled cyclic tests with various phase-angle differences between the mechanical and thermal cyclic loadings. It can be concluded that such cyclic response depends significantly on prescribed phase-angle differences. Obtained experimental results are helpful for both the development of constitutive models and engineering applications of NiTi SMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des., 56(2014), p. 1078.

    Article  CAS  Google Scholar 

  2. S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metall. Trans. A, 17(1986), No. 1, p. 115.

    Article  Google Scholar 

  3. D. Song, G.Z. Kang, Q.H. Kan, C. Yu, and C.Z. Zhang, The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy, Smart Mater. Struct., 23(2014), No. 1, art. No. 015008.

    Article  CAS  Google Scholar 

  4. G.Z. Kang, Q.H. Kan, C. Yu, D. Song, and Y.J. Liu, Whole-life transformation ratchetting and fatigue of super-elastic NiTi alloy under uniaxial stress-controlled cyclic loading, Mater. Sci. Eng. A, 535(2012), p. 228.

    Article  CAS  Google Scholar 

  5. X.M. Wang, Y.F. Wang, Z.Z. Lu, C.H. Deng, and Z.F. Yue, An experimental study of the superelastic behavior in NiTi shape memory alloys under biaxial proportional and non-proportional cyclic loadings, Mech. Mater., 42(2010), No. 3, p. 365.

    Article  Google Scholar 

  6. D. Song, G.Z. Kang, Q.H. Kan, C. Yu, and C.Z. Zhang, Non-proportional multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: Experimental observations, Mech. Mater., 70(2014), p. 94.

    Article  Google Scholar 

  7. Y. Xiao, P. Zeng, L.P. Lei, and H.F. Du, Experimental investigation on rate dependence of thermomechanical response in superelastic NiTi shape memory alloy, J. Mater. Eng. Perform., 24(2015), No. 10, p. 3755.

    Article  CAS  Google Scholar 

  8. Q.H. Kan, C. Yu, G.Z. Kang, J. Li, and W.Y. Yan, Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy, Mech. Mater., 97(2016), p. 48.

    Article  Google Scholar 

  9. S. Nemat-Nasser and W.G. Guo, Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures, Mech. Mater., 38(2006), No. 5-6, p. 463.

    Article  Google Scholar 

  10. K. Gall and H.J. Maier, Cyclic deformation mechanisms in precipitated NiTi shape memory alloys, Acta Mater., 50(2002), No. 18, p. 4643.

    Article  CAS  Google Scholar 

  11. D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F.X. Wagner, M.D. Uchic, P.M. Anderson, and M.J. Mills, Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals, Acta Mater., 57(2009), No. 12, p. 3549.

    Article  CAS  Google Scholar 

  12. R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers, Microstructure changes during non-conventional heat treatment of thin Ni–Ti wires by pulsed electric current studied by transmission electron microscopy, Acta Mater., 58(2010), No. 13, p. 4503.

    Article  CAS  Google Scholar 

  13. M.K. Ibrahim, E. Hamzah, S.N. Saud, E.N.E.A. Bakar, and A. Bahador, Microwave sintering effects on the microstruc-ture and mechanical properties of Ti-51at%Ni shape memory alloys, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 280.

    Article  CAS  Google Scholar 

  14. T. Simon, A. Kröger, C. Somsen, A. Dlouhy, and G. Eggeler, On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys, Acta Mater., 58(2010), No. 5, p. 1850.

    Article  CAS  Google Scholar 

  15. C. Yu, G.Z. Kang, and Q.H. Kan, A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals, J. Mech. Phys. Solids, 82(2015), p. 97.

    Article  CAS  Google Scholar 

  16. P. Šittner, P. Sedlák, H. Seiner, P. Sedmák, J. Pilch, R. Del-ville, L. Heller, and L. Kadeřávek, On the coupling between martensitic transformation and plasticity in NiTi: Experiments and continuum based modelling, Prog. Mater. Sci., 98(2018), p. 249.

    Article  CAS  Google Scholar 

  17. F. Auricchio, S. Marfia, and E. Sacco, Modelling of SMA materials: Training and two way memory effects, Comput. Struct., 81(2003), No. 24–25, p. 2301.

    Article  Google Scholar 

  18. D.C. Lagoudas and P.B. Entchev, Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs, Mech. Mater., 36(2004), No. 9, p. 865.

    Article  Google Scholar 

  19. W. Zaki and Z. Moumni, A 3D model of the cyclic thermo-mechanical behavior of shape memory alloys, J. Mech. Phys. Solids, 55(2007), No. 11, p. 2427.

    Article  CAS  Google Scholar 

  20. A.F. Saleeb, S.A. Padula II, and A. Kumar, A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions, Int. J. Plast., 27(2011), No. 5, p. 655.

    Article  CAS  Google Scholar 

  21. C. Yu, G.Z. Kang, and Q.H. Kan, A micromechanical constitutive model for grain size dependent thermo-mechanically coupled inelastic deformation of super-elastic NiTi shape memory alloy, Int. J. Plast., 105(2018), p. 99.

    Article  CAS  Google Scholar 

  22. J. Wang, Z. Moumni, and W.H. Zhang, A thermomechani-cally coupled finite-strain constitutive model for cyclic pseu-doelasticity of polycrystalline shape memory alloys, Int. J. Plast., 97(2017), p. 194.

    Article  CAS  Google Scholar 

  23. X.Y. Zhang, D.W. Huang, X.J. Yan, and X. Zhou, Modeling functional fatigue of SMA using a more accurate subdivision of martensite volume fractions, Mech. Mater., 96(2016), p. 12.

    Article  Google Scholar 

  24. P. Thamburaja and L. Anand, Polycrystalline shape-memory materials: effect of crystallographic texture, J. Mech. Phys. Solids, 49(2001), No. 4, p. 709.

    Article  Google Scholar 

  25. L. Anand and M.E. Gurtin, Thermal effects in the superelas-ticity of crystalline shape-memory materials, J. Mech. Phys. Solids, 51(2003), No. 6, p. 1015.

    Article  CAS  Google Scholar 

  26. C. Yu, G.Z. Kang, Q.H. Kan, and D. Song, A micromechan-ical constitutive model based on crystal plasticity for ther-mo-mechanical cyclic deformation of NiTi shape memory alloys, Int. J. Plast., 44(2013), p. 161.

    Article  CAS  Google Scholar 

  27. C. Yu, G.Z. Kang, Q.H. Kan, and X. Xu, Physical mechanism based crystal plasticity model of NiTi shape memory alloys addressing the thermo-mechanical cyclic degeneration of shape memory effect, Mech. Mater., 112(2017), p. 1.

    Article  Google Scholar 

  28. Y. Xiao, P. Zeng, and L.P. Lei, Micromechanical modeling on thermomechanical coupling of cyclically deformed supe-relastic NiTi shape memory alloy, Int. J. Plast., 107(2018), p. 164.

    Article  CAS  Google Scholar 

  29. C. Cisse, W. Zaki, and T.B. Zineb, A review of constitutive models and modeling techniques for shape memory alloys, Int. J. Plast., 76(2016), p. 244.

    Article  CAS  Google Scholar 

  30. C. Cisse, W. Zaki, and T.B. Zineb, A review of modeling techniques for advanced effects in shape memory alloy behavior, Smart Mater. Struct., 25(2016), No. 10, art. No. 103001.

    Article  CAS  Google Scholar 

  31. G.Z. Kang, Advances in transformation ratcheting and rat-cheting-fatigue interaction of NiTi shape memory alloy, Acta Mech. Solida Sin., 26(2013), No. 3, p. 221.

    Article  Google Scholar 

  32. G.Z. Kang and D. Song, Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo-mechanical ones, Theor. Appl. Mech. Lett., 5(2015), No. 6, p. 245.

    Article  Google Scholar 

  33. W.J. Buehler, J.V. Gilfrich, and R.C. Wiley, Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi, J. Appl. Phys., 34(1963), No. 5, p. 1475.

    Article  CAS  Google Scholar 

  34. M.J. Bigeon and M. Morin, Thermomechanical study of the stress assisted two way memory effect fatigue in TiNi and CuZnAl wires, Scripta Mater., 35(1996), No. 12, p. 1373.

    Article  CAS  Google Scholar 

  35. D.C. Lagoudas, D.A. Miller, L. Rong, and P.K. Kumar, Thermomechanical fatigue of shape memory alloys, Smart Mater. Struct., 18(2009), No. 8, art. No. 085021.

    Article  Google Scholar 

  36. G.S. Mammano and E. Dragoni, Functional fatigue of Ni–Ti shape memory wires under various loading conditions, Int. J. Fatigue, 69(2014), p. 71.

    Article  CAS  Google Scholar 

  37. P. Pappas, D. Bollas, J. Parthenios, V. Dracopoulos, and C. Galiotis, Transformation fatigue and stress relaxation of shape memory alloy wires, Smart Mater. Struct., 16(2007), No. 6, p. 2560.

    Article  Google Scholar 

  38. V. Demers, V. Brailovski, S.D. Prokoshkin, and K.E. Inae-kyan, Thermomechanical fatigue of nanostructured Ti–Ni shape memory alloys, Mater. Sci. Eng. A, 513-514(2009), p. 185.

    Article  CAS  Google Scholar 

  39. Y.F. Li, X.J. Mi, J. Tan, and B.D. Gao, Thermo-mechanical cyclic transformation behavior of Ti–Ni shape memory alloy wire, Mater. Sci. Eng. A, 509(2009), No. 1-2, p. 8.

    Article  CAS  Google Scholar 

  40. Z.H. Bo and D.C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect, Int. J. Eng. Sci., 37(1999), No. 9, p. 1175.

    Article  CAS  Google Scholar 

  41. A.F. Saleeb and J.S. Owusu-Danquah, The role of residual stress states in modeling the cyclic two-way shape memory behavior of high-temperature NiTiPd alloys and actuation components, Mech. Mater., 110(2017), p. 29.

    Article  Google Scholar 

  42. Y. Chemisky, D.J. Hartl, and F. Meraghni, Three-dimensional constitutive model for structural and functional fatigue of shape memory alloy actuators, Int. J. Fatigue, 112(2018), p. 263.

    Article  CAS  Google Scholar 

  43. H. Yin, Y.J. He, and Q.P. Sun, Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy, J. Mech. Phys. Solids, 67(2014), p. 100.

    Article  CAS  Google Scholar 

  44. T.X. Zhao, J. Li, Q.H. Kan, and G.Z. Kang, Investigation on temperature cyclic loading control device of shape memory alloy based on LabVIEW platform, J. Exp. Mech., 34(2019), No. 1, p. 55.

    Google Scholar 

  45. Y. Liu, Z. Xie, J. Van Humbeeck, and L. Delaey, Asymmetry of stress–strain curves under tension and compression for Ni-Ti shape memory alloys, Acta Mater., 46(1998), No. 12, p. 4325.

    Article  CAS  Google Scholar 

  46. C. Yu, G.Z. Kang, D. Song, and Q.H. Kan, Effect of marten-site reorientation and reorientation-induced plasticity on mul-tiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: new consideration in constitutive model, Int. J. Plast., 67(2015), p. 69.

    Article  CAS  Google Scholar 

  47. L.C. Brinson, I. Schmidt, and R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, J. Mech. Phys. Solids, 52(2004), No. 7, p. 1549.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 11532010 and 11602203) and Fundamental Research Funds for the Central Universities of China (No. 2682018CX43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-zheng Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Tx., Kang, Gz., Yu, C. et al. Experimental investigation of the cyclic degradation of the one-way shape memory effect of NiTi alloys. Int J Miner Metall Mater 26, 1539–1550 (2019). https://doi.org/10.1007/s12613-019-1884-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1884-8

Keywords

Navigation