Nd−Mg−Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics

  • Yuan Li
  • Li-na Cheng
  • Wen-kang Miao
  • Chun-xiao Wang
  • De-zhi Kuang
  • Shu-min HanEmail author


To improve the electrochemical kinetics of Nd–Mg–Ni alloy electrodes, the alloy surface was modified with highly conductive reduced graphene oxide (rGO) via a chemical reduction process. Results indicated that rGO sheets uniformly coated on the alloy surface, yielding a threedimensional network layer. The coated surfaces contained numerous hydrophilic functional groups, leading to better wettability of the alloy in aqueous alkaline media. This, in turn, increased the concentration of electro-active species at the interface between the electrode and the electrolyte, improving the electrochemical kinetics and the rate discharge of the electrodes. The high rate dischargeability at 1500 mA·g−1 increased from 53.2% to 83.9% after modification. In addition, the modification layer remained stable and introduced a dense metal oxide layer to the alloy surface after a long cycling process. Therefore, the protective layer prevented the discharge capacity from quickly decreasing and improved cycling stability.


hydrogen storage alloys surface modification graphene oxide electrochemical properties kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (NOs. 21303157 and 51771164), the Natural Science Foundation of Hebei Province (No. E2019203161), and Scientific Research Projects in Colleges and Universities in Hebei Province (No. QN2016002).


  1. [1]
    J. Zhang, G.J. Shao, W.W. Guo, Y.W. Lou, and B.J. Xia, Estimating the state of charge of MH–Ni batteries by measuring their stable internal pressure, J. Power Sources, 343(2017), p. 183.CrossRefGoogle Scholar
  2. [2]
    W.C.M. de Oliveira, G.D. Rodrigues, A.B. Mageste, and L.R. de Lemos, Green selective recovery of lanthanum from Ni–MH battery leachate using aqueous two-phase systems, Chem. Eng. J., 322(2017), p. 346.CrossRefGoogle Scholar
  3. [3]
    L.A. Benavides, D.J. Cuscueta, H. Troiani, A.A. Ghilarducci, and H.R. Salva, Effect of carbon nanotubes purification in the performance of a negative electrode of a Ni/MH battery, Int. J. Hydrogen Energy, 39(2014), No. 16, p. 8841.CrossRefGoogle Scholar
  4. [4]
    L.Z. Ouyang, J.L. Huang, H. Wang, J.W. Liu, and M. Zhu, Progress of hydrogen storage alloys for Ni–MH rechargeable power batteries in electric vehicles: A review, Mater. Chem. Phys., 200(2017), p. 164.CrossRefGoogle Scholar
  5. [5]
    G.H. Ağaoğlu and G. Orhan, Production and electrochemical characterization of MgNi alloys by molten salt electrolysis for Ni–MH batteries, Int. J. Hydrogen Energy, 43(2018), No. 12, p. 6266.CrossRefGoogle Scholar
  6. [6]
    Y.F. Liu, Y.H. Cao, L. Huang, M.X. Gao, and H.G. Pan, Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries, J. Alloys Compd., 509(2011), No. 3, p. 675.CrossRefGoogle Scholar
  7. [7]
    X. Tian, G. Yun, H.Y. Wang, T. Shang, Z.Q. Yao, W. Wei, and X.X. Liang, Preparation and electrochemical properties of La–Mg–Ni-based La0.75Mg0.25Ni3.3Co0.5 multiphase hydrogen storage alloy as negative material of Ni/MH battery, Int. J. Hydrogen Energy, 39(2014), No. 16, p. 8474.CrossRefGoogle Scholar
  8. [8]
    Y.M. Zhao, S.M. Han, Y. Li, J.J. Liu, L. Zhang, S.Q. Yang, J. Cao, and Z.R. Jia, Structural phase transformation and electrochemical features of La–Mg–Ni-based AB4-type alloys, Electrochim. Acta, 215(2016), p. 142.CrossRefGoogle Scholar
  9. [9]
    J.G. Yuan, W. Li, and Y. Wu, Hydrogen storage and lowtemperature electrochemical performances of A2B7 type La–Mg–Ni–Co–Al–Mo alloys, Prog. Nat. Sci., 27(2017), No. 2, p. 169.CrossRefGoogle Scholar
  10. [10]
    Y.F. Liu, H.G. Pan, M.X. Gao, and Q.D. Wang, Advanced hydrogen storage alloys for Ni/MH rechargeable batteries, J. Mater. Chem., 21(2011), p. 4743.CrossRefGoogle Scholar
  11. [11]
    S. Ma, M.X. Gao, R. Li, H.G. Pan, and Y.Q. Lei, A study on the structural and electrochemical properties of La0.7-xNdxMg0.3Ni2.45Co0.75Mn0.1Al0.2(x=0.0-3.0) hydrogen storage alloys, J. Alloys Compd., 457(2008), No. 1–2, p. 457.CrossRefGoogle Scholar
  12. [12]
    Y. Li, S.M. Han, J.H. Li, X.L. Zhu, and L. Hu, The effect of Nd content on the electrochemical properties of low–Co La–Mg–Ni-based hydrogen storage alloys, J. Alloys Compd., 458(2008), No. 1–2, p. 357.CrossRefGoogle Scholar
  13. [13]
    Y. Li, Y. Tao, and Q. Huo, Effect of stoichiometry and Cusubstitution on the phase structure and hydrogen storage properties of Ml–Mg–Ni-based alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 86.CrossRefGoogle Scholar
  14. [14]
    S.Q. Yang, H.P. Liu, S.M. Han, Y. Li, and W.Z. Shen, Effects of electroless composite plating Ni–Cu–P on the electrochemical properties of La–Mg–Ni-based hydrogen storage alloy, Appl. Surf. Sci., 271(2013), p. 210.CrossRefGoogle Scholar
  15. [15]
    B.P. Wang, L.M. Zhao, C.S. Cai, and S.X. Wang, Effects of surface coating with polyaniline on electrochemical properties of La–Mg–Ni-based electrode alloys, Int. J. Hydrogen Energy, 39(2014), No. 20, p. 10374.CrossRefGoogle Scholar
  16. [16]
    Y. Li, Y. Tao, D.D. Ke, Y.F. Ma, and S.M. Han, Electrochemical kinetic performances of electroplating Co–Ni on La–Mg–Ni-based hydrogen storage alloys, Appl. Surf. Sci., 357(2015), p. 1714.CrossRefGoogle Scholar
  17. [17]
    M. Dymek, M. Nowak, M. Jurczyk, and H. Bala, Encapsulation of La1.5Mg0.5Ni7 nanocrystalline hydrogen storage alloy with Ni coatings and its electrochemical characterization, J. Alloys Compd., 749(2018), p. 534.CrossRefGoogle Scholar
  18. [18]
    L.L. Xiao, Y.J. Wang, Y. Liu, D.W. Song, L.F. Jiao, and H.T. Yuan, Influence of surface treatments on microstructure and electrochemical properties of La0.7Mg0.3Ni2.4Co0.6 hydrogen–storage alloy, Int. J. Hydrogen Energy, 33(2008), No. 14, p. 395.Google Scholar
  19. [19]
    A. Matsuyama, H. Mizutani, T. Kozuka, and H. Inoue, Effect of surface treatment with boiling alkaline solution on electrochemical properties of the ZrNi alloy electrode, Int. J. Hydrogen Energy, 41(2016), No. 23, p. 9908.CrossRefGoogle Scholar
  20. [20]
    W.H. Zhou, Z.Y. Tang, D. Zhu, Z.W. Ma, C.L. Wu, L.W. Huang, and Y.G. Chen, Low-temperature and instantaneous high-rate output performance of AB5-type hydrogen storage alloy with duplex surface hot–alkali treatment, J. Alloys Compd., 692(2017), p. 364.CrossRefGoogle Scholar
  21. [21]
    R.C. Cui, C.C. Yang, M.M. Li, B. Jin, X.D. Ding, and Q. Jiang, Enhanced high-rate performance of ball-milled MmNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys with graphene nanoplatelets, J. Alloys Compd., 693(2017), p. 126.CrossRefGoogle Scholar
  22. [22]
    L.J. Huang, W. Y.X. Wang, H. Zhen, J.G. Tang, W. Yao, L. J.X. Liu, J. J. Q. Liu, L. J.Q. Liu, and L.A. Belfiore, Effects of graphene/silver nanohybrid additives on electrochemical properties of magnesium-based amorphous alloy, J. Power Sources, 269(2014), p. 716.CrossRefGoogle Scholar
  23. [23]
    L.J. Huang, Y.X. Wang, J.G. Tang, Y. Wang, J.X. Liu, Z. Huang, J.Q. Jiao, W. Wang, M.J. Kipper, and L. A. Belfiroe, A new graphene nanocomposite to improve the electrochemical properties of magnesium-based amorphous alloy, Mater. Lett., 160(2015), p. 104.CrossRefGoogle Scholar
  24. [24]
    N. Li, Y. Du, Q.P. Feng, G.W. Huang, H.M. Xiao, and S.Y. Fu, A novel type of battery-supercapacitor hybrid device with highly switchable dual performances based on a carbon skeleton/Mg2Ni free-standing hydrogen storage electrode, ACS Appl. Mater. Interfaces, 9(2017), No. 51, p. 44828.CrossRefGoogle Scholar
  25. [25]
    Z.Q. Lan, K. Zeng, B. Wei, G.X. Li, H. Ning, and J. Guo, Nickel-graphene nanocomposite with improved electrochemical performance for La0.7Mg0.3(Ni0.85Co0.15)3.5 electrode, Int. J. Hydrogen Energy, 42(2017), No. 17, p. 12458.CrossRefGoogle Scholar
  26. [26]
    J. Zhang, H. Qu, S. Yan, L. R. Yin, and D.W. Zhou, Dehydrogenation properties and mechanisms of MgH2–NiCl2 and MgH2–NiCl2–graphene hydrogen storage composites, Met. Mater. Int., 23(2017), No. 4, p. 831.CrossRefGoogle Scholar
  27. [27]
    Z.Q. Lan, Z.Z. Sun, Y.C. Ding, N. Hua, W.L. Wei, and G. Jin, Catalytic action of Y2O3@graphene nanocomposite on the hydrogen–storage property of Mg–Al alloy, J. Mater. Chem. A, 5(2017), No. 29, p. 15200.CrossRefGoogle Scholar
  28. [28]
    H.J. Wu, Z.Z. Sun, J.Q. Du, H. Ning, G.X. Li, W.L. Wei, Z.Q. Lan, and J. Guo, Catalytic effect of graphene on the hydrogen storage properties of Mg–Li alloy, Mater. Chem. Phys., 207(2018), p. 221.CrossRefGoogle Scholar
  29. [29]
    J. Chen, Y.R. Li, L. Huang, C. Li, and G.Q. Shi, High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process, Carbon, 81(2015), p. 826.CrossRefGoogle Scholar
  30. [30]
    M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martinez-Alonso, and J.M.D. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C, 114(2010), No. 14, p. 6426.CrossRefGoogle Scholar
  31. [31]
    Y. Li, C.X. Wang, Z.T. Dong, J. Wang, S.Q. Yang, D.D. Ke, and S.M. Han, Effects of coating layers on electrochemical properties of Nd–Mg–Ni-based alloys, Int. J. Hydrogen Energy, 42(2017), No. 30, p. 19148.CrossRefGoogle Scholar
  32. [32]
    H. Miao, M.X. Gao, Y.F. Liu, D. Zhu, and H.G. Pan, An improvement on cycling stability of Ti–V–Fe-based hydrogen storage alloys with Co substitution for Ni, J. Power Sources, 184(2008), No. 2, p. 627.CrossRefGoogle Scholar
  33. [33]
    Y.F. Zhu, H.G. Pan, M.X. Gao, Y.F. Liu, and Q.D. Wang, Influence of annealing treatment on Laves phase compound containing a V-based BCC solid solution phase-Part II: Electrochemical properties, Int. J. Hydrogen Energy, 28(2003), No. 4, p. 395.CrossRefGoogle Scholar
  34. [34]
    N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, and T. Iwasaki, Electrochemical impedance and deterioration behavior of metal hydride electrodes, J. Alloys Compd., 202(1993), No. 1–2, p. 183.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Yuan Li
    • 1
  • Li-na Cheng
    • 1
  • Wen-kang Miao
    • 1
  • Chun-xiao Wang
    • 1
  • De-zhi Kuang
    • 3
  • Shu-min Han
    • 1
    • 2
    Email author
  1. 1.Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina
  3. 3.Hunan Corun New Energy Co., Ltd.ChangshaChina

Personalised recommendations