Preparation of CaB6 powder via calciothermic reduction of boron carbide

  • Yu Wang
  • Guo-hua ZhangEmail author
  • Yue-dong Wu
  • Xin-bo He


The method of calciothermic reduction of B4C was proposed for preparing CaB6. The phase transition and morphology evolution during the reaction were investigated in detail. The experimental results reveal that Ca first reacts with B4C to generate CaB2C2 and CaB6 at a low temperature and that the CaB2C2 subsequently reacts with Ca to produce CaB6 and CaC2 at a high temperature. After the products were leached to remove the byproduct CaC2, pure CaB6 was obtained. The grain size of the prepared CaB6 was 2–3 μm, whereas its particle size was 4–13 μm; it inherited the particle size of B4C. The residual C content of the product was decreased to 1.03wt% after the first reaction at 1173 K for 4 h and the second reaction at 1623 K for 4 h.


borides carbides particle size powders calcium hexaboride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Fundamental Research Funds for the Central Universities of China (No. FRF-GF-17-B41).


  1. [1]
    Nisso Tsushinsha, ed, Handbook on High-melting-point Composites, Nisso Tsushinsha, Ehime, 1977.Google Scholar
  2. [2]
    R.A. Cutler, Engineered Materials Handbook, Vol. 4, S.J. Schneider Jr. ed., ASM International, The Materials Information Society, Metals Park, Ohio, 1991, p. 787.Google Scholar
  3. [3]
    P.A. Dearnley and T. Bell, Engineering the surface with boron based materials, Surf. Eng, 1(1985), No. 3, p. 203.CrossRefGoogle Scholar
  4. [4]
    H.J. Tromp, P. Van Gelderen, P.J. Kelly, G. Brocks, and P.A. Bobbert, CaB6: a new semiconducting material for spin electronics, Phys. Rev. Lett., 87(2001), art. No. 016401.Google Scholar
  5. [5]
    D.P. Young, D. Hall, M.E. Torelli, Z. Fisk, J.L. Sarrao, J.D. Thompson, H.R. Ott, S.B. Oseroff, R.G. Goodrich, and R. Zysler, High-temperature weak ferromagnetism in a low-density free-electron gas, Nature, 397(1999), p. 412.CrossRefGoogle Scholar
  6. [6]
    L.H. Bao, X.P. Qi, L.M. Chao, and O. Tegus, Synthesis, and magnetic and optical properties of nanocrystalline alkaline-earth hexaborides, CrystEngComm, 18(2016), p. 1223.CrossRefGoogle Scholar
  7. [7]
    H. Razavi-Zadeh and S. Mirdamadi.T, Deoxidizing copper with CaB6, JOM, 39(1987), No. 2, p. 42.CrossRefGoogle Scholar
  8. [8]
    K.G. Schmitt-Thomas, A. Lipp, and K. Schwetz, Process for the Production of Oxygen-Free Copper Casting and Moldings, United States Patent, Appl. 738819, 1976.Google Scholar
  9. [9]
    T. Rymon-Lipinski, B. Schmelzer, and S. Ulitzka, Tests on the oxidation-inhibiting effect of CaB6 in refractory MgO-C materials, Steel Res., 65(1994), No. 6, p. 234.CrossRefGoogle Scholar
  10. [10]
    J.W. Butler, Neutron-absorbing bricks made from CaB6, Nucl. Instrum. Methods, 7(1960), No. 2, p. 201.CrossRefGoogle Scholar
  11. [11]
    M.T. Zheng, H.W. Dong, Y. Xiao, S.T. Liu, H. Hu, Y.R. Liang, L.Y. Sun, and Y.L. Liu, Facile one-step and high-yield synthesis of few-layered and hierarchically porous boron nitride nanosheets, RSC Adv., 6(2016), No. 51, p. 45402.CrossRefGoogle Scholar
  12. [12]
    B.A. Galanov, V.V. Kartuzov, O.N. Grigoriev, L.M. Melakh, S.M. Ivanov, E.V. Kartuzov, and P. Swoboda, Penetration resistance of B4C-CaB6 based light-weight armor materials, Procedia Eng., 58(2013), p. 328.CrossRefGoogle Scholar
  13. [13]
    P. Seenuvasaperumal, A. Elayaperumal, and R. Jayavel, Influence of calcium hexaboride reinforced magnesium composite for the mechanical and tribological behviour, Tribol. Int., 111(2017), p. 18.CrossRefGoogle Scholar
  14. [14]
    Y. Gao, Z.D. Liu, Q. Wang, and Y.T. Wang, Mcrostructure and mechanical properties of Nb-Mo-ZrB2 composites prepared by hot-pressing sintering, Int. J. Miner. Metall. Mater, 25(2018), No. 7, p. 824.CrossRefGoogle Scholar
  15. [15]
    Y.R. Zhang, Q. Cai, Y.C. Liu, Z.Q. Ma, C. Li, and H.J. Li, Evaluation of precipitation hardening in TiC-reinforced Ti2AlNb-based alloys, Int. J. Miner. Metall. Mater, 25 (2018), No. 4, p. 453.CrossRefGoogle Scholar
  16. [16]
    L. Zhang, G.H. Mn, and H.S. Yu, Reaction mechanism and size control of CaB6 micron powder synthesized by the boroncarbide method, Ceram. Int., 35(2009), No. 8, p. 3533.CrossRefGoogle Scholar
  17. [17]
    M. Kakiage, S. Shiomi, I. Yanase, and H. Kobayashi, Low-temperature synthesis of calcium hexaboride powder via transient boron carbide formation, J. Am. Ceram. Soc, 98 (2015), No. 9, p. 2724.CrossRefGoogle Scholar
  18. [18]
    D. Yilmaz, U. Savaci, N. Koç, and S. Turanb, Carbothermic reduction synthesis of calcium hexaboride using PVA-calcium hexaborate mixed gels, Ceram. Int., 44(2018), No. 3, p. 2976.CrossRefGoogle Scholar
  19. [19]
    M. Kakiage, S. Shiomi, T. Ohashi, and H. Kobayashi, Effect of calcium carbonate particle size on formation and morphology of calcium hexaboride powder synthesized from condensed boric acid-poly (vinyl alcohol) product, Adv. Powder Technol, 29(2018), No. 1, p. 36.CrossRefGoogle Scholar
  20. [20]
    K. Bao, L.X. Lin, H. Chang, and S.W. Zhang, Low-temperature synthesis of calcium hexaboride nanoparticles via magnesiothermic reduction in molten salt, J. Ceram. Soc. Jpn., 125(2017), No. 12, p. 866.CrossRefGoogle Scholar
  21. [21]
    Ö. Balcı, D. Ağaoğulları, İ. Duman, and M.L. Öveçoğlu, Synthesis of CaB6 powders via mechanochemical reaction of Ca/B2O3 blends, Powder Technol, 225(2012), p. 136.CrossRefGoogle Scholar
  22. [22]
    X. Huang, J.C. Zhong, L.S. Dou, and K. Wang, Combustion synthesis of CaB6 powder from calcium hexaborate and Mg, Int. J. Refract. Met. Hard Mater, 28(2010), No. 2, p. 143.CrossRefGoogle Scholar
  23. [23]
    X. Wang and Y.C. Zhai, An electrochemical method for the preparation of CaB6 crystal powder, J. Appl. Electrochem., 39(2009), p. 1797.CrossRefGoogle Scholar
  24. [24]
    W. Weng, M.Y. Wang, X.Z. Gong, Z. Wang, D. Wang, and Z.C. Guo, Electrochemical conversions of soluble borates to CaB6 with superior optical property in NaCl-CaCl2 melt, J. Electrochem. Soc, 165(2018), No. 10, p. E477.CrossRefGoogle Scholar
  25. [25]
    S. Angappan, M. Helan, A. Visuvasam, L.J. Berchmans, and V. Ananth, Electrolytic preparation of CaB6 by molten salt technique, Ionics, 17(2011), No. 6, p. 527.CrossRefGoogle Scholar
  26. [26]
    S.Q. Zheng, G.H. Min, Z.D. Zou, H.S. Yu, and J.D. Han, Synthesis of calcium hexaboride powder via the reaction of calcium carbonate with boron carbide and carbon, J. Am. Ceram. Soc, 84(2001), No. 11, p. 2725.CrossRefGoogle Scholar
  27. [27]
    B. Albert and K. Schmitt, CaB2C2: Reinvestigation of a semiconducting boride carbide with a layered structure and an interesting boron/carbon ordering scheme, Inorg. Chem., 38(1999), No. 26, p. 6159.CrossRefGoogle Scholar
  28. [28]
    J. Akimitsu, K. Takenawa, K. Suzuki, H. Harima, and Y. Kuramoto, High-temperature ferromagnetism in CaB2C2, Science, 293(2001), No. 5532, p. 1125.CrossRefGoogle Scholar
  29. [29]
    A.V. Blinder, S.P. Gordienko, É.V. Marek, and V.B. Muratov, Thermodynamic properties of calcium hexaboride, Powder Metall. Met. Ceram., 36(1997), No. 7–8, p. 409.CrossRefGoogle Scholar
  30. [30]
    W. Ostwald, Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper, Z. Phys. Chem., 34(1900), p. 495.Google Scholar
  31. [31]
    L. Zhang, G.H. Min, H.S. Yu, H.M. Chen, and G. Feng, The size and morphology of fine CaB6 powder synthesized by nanometer CaCO3 as reactant, Key Eng. Mater, 326–328(2006), p. 369.CrossRefGoogle Scholar
  32. [32]
    S.S.N. Murthy, M. Patel, J.J. Reddy, and V.V. Bhanu Prasad, Influence of B4C particle size on the synthesis of ZrB2 by boro/carbothermal reduction method, Trans. Indian Inst. Met, 71(2018), No. 1, p. 57.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Yu Wang
    • 1
  • Guo-hua Zhang
    • 1
    Email author
  • Yue-dong Wu
    • 1
  • Xin-bo He
    • 2
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations