Skip to main content
Log in

Study on the mechanical activation of malachite and the leaching of complex copper ore in the Luanshya mining area, Zambia

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Mechanical activation (MA) of malachite was carried out by dry planetary grinding (DPG) and wet Isa grinding (WIG) methods. When the rotational speed was increased to 400 r/min in DPG, the specific surface area of malachite reached the maximum and the particle size reached the minimum of 0.7–100 µm. Agglomeration occurred between mineral particles when the rotational speed was increased to 580 r/min in DPG. However, no agglomeration was observed among particles with sizes 0.4–3 µm in WIG. X-ray diffraction analysis showed that, at a 580 r/min rotational speed in DPG, the amorphization degree of malachite was 53.12%, whereas that in WIG was 71.40%, indicating that MA led to amorphization and distortion of crystal structures. In addition, in the Fourier transform infrared (FT-IR) spectra of activated malachite, the bands associated with −OH, CO 2−3 and metal lattice vibrations of Cu-O and Cu-OH were weakened, and a new H-O-H bending mode and peaks of gaseous CO2 appeared, indicating that MA decreased the band energy, enhanced dihydroxylation, and increased the chemical reactivity of the malachite. Furthermore, the leaching behavior of copper ore was greatly improved by MA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.Q. Zhao, Treatment of Copper Oxide Ore, The Metallurgical Industry Press, Beijing, 1982.

    Google Scholar 

  2. O.N. Ata, S. Çolak, Z. Ekinci, and M. Çopur, Determination of the optimum conditions for leaching of malachite ore in H2SO4 solutions, Chem. Eng. Technol., 24(2001), No. 4, p. 409.

    Article  CAS  Google Scholar 

  3. J.S. Deng, S.M. Wen, Q. Yin, D.D. Wu, and Q.W. Sun, Leaching of malachite using 5-sulfosalicylic acid, J. Taiwan Inst. Chem. Eng., 71(2017), p. 20.

    Article  CAS  Google Scholar 

  4. D. Bingöl and M. Canbazoǧlu, Dissolution kinetics of malachite in sulphuric acid, Hydrometallurgy, 72(2004), No. 1–2, p. 159.

    Article  CAS  Google Scholar 

  5. D. Bingöl, M. Canbazoǧlu, and S. Aydoǧan, Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching, Hydrometallurgy, 76(2005), No. 1–2, p. 55.

    Article  CAS  Google Scholar 

  6. A. Künkül, M.M. Kocakerim, S. Yapici, and A. Demirbaǧ, Leaching kinetics of malachite in ammonia solutions, Int. J. Miner. Process., 41(1994), No. 3–4, p. 167.

    Article  Google Scholar 

  7. X. Wang, Q.Y. Chen, H.P. Hu, Z.L. Yin, and Z.L. Xiao, Solubility prediction of malachite in aqueous ammoniacal ammonium chloride solutions at 25°C, Hydrometallurgy, 99(2009), No. 3–4, p. 231.

    Article  CAS  Google Scholar 

  8. K.B. Fu, H. Lin, Y.B. Dong, X.L. Mo, and H. Wang, The rules of bacteria in malachite leaching of low acidity, Met Mine, 40(2011), No. 3, p. 69.

    Google Scholar 

  9. R.J. Ma, New development of hydrometallurgy, Hydrometall. China, 26(2007), No. 1, p. 1.

    Google Scholar 

  10. K. Tkáčová, P. Baláž, B. Mišura, V.E. Vigdergauz, and V.A. Chanturiya, Selective leaching of zinc from mechanically activated complex Cu Pb Zn concentrate, Hydrometallurgy, 33(1993), No. 3, p. 291.

    Article  Google Scholar 

  11. C. Zhang, Study on Mechanochemical Calorimeter and Mechanochemical Energy [Dissertation], Central South University, Changsha, 2008.

    Google Scholar 

  12. P. Baláž, Influence of solid state properties on ferric chloride leaching of mechanically activated galena, Hydrometallurgy, 40(1996), No. 3, p. 359.

    Article  Google Scholar 

  13. P. Baláž, Extractive Metallurgy of Activated Minerals, Elsevier, Amsterdam, 2000.

    Google Scholar 

  14. D. Tromans and J.A. Meech, Enhanced dissolution of minerals: microtopography and mechanical activation, Miner. Eng., 12(1999), No. 6, p. 609.

    Article  CAS  Google Scholar 

  15. N.J. Welham, Enhanced dissolution of tantalite/columbite following milling, Int. J. Miner. Process., 61(2001), No. 3, p. 145.

    Article  CAS  Google Scholar 

  16. P. Baláž, Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin, Heidelberg, 2008.

    Google Scholar 

  17. M.W. Gao, R.J. Holmes, and J. Pease, The latest developments in fine and ultrafine grinding technologies, [in] 23rd International Mineral Processing Congress, Istanbul, 2006, p. 30.

  18. P. Baláž, M. Baláž, O. Shpotyuk, P. Demchenko, M. Vlček, M. Shopska, J. Briančin, Z. Bujňáková, Y. Shpotyuk, B. Selepová, and L. Balážová, Properties of arsenic sulphide (β-As4S4) modified by mechanical activation, J. Mater. Sci., 52(2017), No. 3, p. 1747.

    Article  CAS  Google Scholar 

  19. R.A. Kleiv and M. Thornhill, The effect of mechanical activation in the production of olivine surface area, Miner. Eng., 89(2016), p. 19.

    Article  CAS  Google Scholar 

  20. K. Tkáčová and N. Stevulová, Change in structure and enthalpy of carbonates and quartz accompanying grinding in air and aqueous environments, Powder Technol., 52(1987), No. 2, p. 161.

    Article  Google Scholar 

  21. T. Tunç and K. Yildiz, Structural alterations in mechanically activated malachite, Acta Phys. Pol. A, 125(2014), No. 2, p. 177.

    Article  Google Scholar 

  22. G.R. Wang, H.Y. Yang, L.L. Tong, and Y.Y. Liu, Research on process mineralogy of oxidized copper ore in Luanshya, Zambia, J. Northeastern Univ. Nat. Sci., 40(2019), No. 3, p. 350.

    CAS  Google Scholar 

  23. R. Mejdoub, H. Hammi, M. Khitouni, J.J. Sunol, and A. M’nif, The effect of prolonged mechanical activation duration on the reactivity of portland cement: Effect of particle size and crystallinity changes, Constr. Build. Mater., 152(2017), p. 1041.

    Article  CAS  Google Scholar 

  24. S. Romeis, J. Schmidt, and W. Peukert, Mechanochemical aspects in wet stirred media milling, Int. J. Miner. Process., 156(2016), p. 24.

    Article  CAS  Google Scholar 

  25. P. Pourghahramani, E. Altin, M.R. Mallembakam, W. Peukert, and E. Forssberg, Microstructural characterization of hematite during wet and dry millings using rietveld and xrd line profile analyses, Powder Technol., 186(2008), No. 1, p. 9.

    Article  CAS  Google Scholar 

  26. S.M. Ohlberg and D.W. Strickler, Determination of percent crystallinity of partly devitrified glass by X-ray diffraction, J. Am. Ceram. Soc., 45(1962), No. 4, p. 170.

    Article  CAS  Google Scholar 

  27. J.A. Goldsmith and S.D. Ross, The infra-red spectra of azurite and malachite, Spectrochim. Acta Part A, 24(1968), No. 12, p. 2131.

    Article  CAS  Google Scholar 

  28. M. Descamps and J.F. Willart, Perspectives on the amorphization/milling relationship in pharmaceutical materials, Adv. Drug Delivery Rev., 100(2016), p. 51.

    Article  CAS  Google Scholar 

  29. P. Baláž, E. Turianicová, M. Fabián, R.A. Kleiv, J. Briančin, and A. Obut, Structural changes in olivine (Mg. Fe)2SiO4 mechanically activated in high-energy mills, Int. J. Miner. Process., 88(2008), No. 1–2, p. 1.

    Article  CAS  Google Scholar 

  30. T. Tunç, F. Apaydin, and K. Yildiz, Effects of mechanical activation on the structure of nickeliferous laterite, Acta Phys. Pol. A, 123(2013), No. 2, p. 349.

    Article  CAS  Google Scholar 

  31. Y.J. Wang, S.L. Pan, X.L. Hou, G. Liu, J.D. Wang, and D.Z. Jia, Non-centrosymmetric sodium borate: Crystal growth, characterization and properties on Na2B4O12H10, Solid State Sci., 12(2010), No. 10, p. 1726.

    Article  CAS  Google Scholar 

  32. Z. He, J. Zhou, Z.P. Lai, L.H. Yang, J.M. Liang, H. Long, and X.J. Ou, Quartz OSL dating of sand dunes of Late Pleistocene in the Mu Us Desert in northern China, Quat. Geochronol., 5(2010), No. 2–3, p. 102.

    Article  Google Scholar 

  33. E. Horváth, R.L. Frost, É. Makó, J. Kristóf, and T. Cseh, Thermal treatment of mechanochemically activated kaolinite, Thermochim. Acta, 404(2003), No. 1–2, p. 227.

    Article  CAS  Google Scholar 

  34. R.L. Frost, W.N. Martens, L. Rintoul, E. Mahmutagic, and J.T. Kloprogge, Raman spectroscopic study of azurite and malachite at 298 and 77 K, J. Raman Spectrosc., 33(2002), No. 4, p. 252.

    Article  CAS  Google Scholar 

  35. Y.Z. Xu, T. Jiang, M. Zhou, J. Wen, W.Y. Chen, and X.X. Xue, Effects of mechanical activation on physicochemical properties and alkaline leaching of boron concentrate, Hydrometallurgy, 173(2017), p. 32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Special Funds for the National Natural Science Foundation of China (No. U1608254), and the National Key R&D Program of China (No. 2018YFC1902002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-ying Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Gr., Yang, Hy., Liu, Yy. et al. Study on the mechanical activation of malachite and the leaching of complex copper ore in the Luanshya mining area, Zambia. Int J Miner Metall Mater 27, 292–300 (2020). https://doi.org/10.1007/s12613-019-1856-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1856-z

Keywords

Navigation