Skip to main content
Log in

Recent progress in diamond-based MOSFETs

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Recent developments in the use of diamond materials as metal-oxide-semiconductor field-effect transistors (MOSFETs) are introduced in this article, including an analysis of the advantages of the device owing to the unique physical properties of diamond materials, such as their high-temperature and negative electron affinity characteristics. Recent research progress by domestic and international research groups on performance improvement of hydrogen-terminated and oxygen-terminated diamond-based MOSFETs is also summarized. Currently, preparation of large-scale diamond epitaxial layers is still relatively difficult, and improvements and innovations in the device structure are still ongoing. However, the key to improving the performance of diamond-based MOSFET devices lies in improving the mobility of channel carriers. This mainly includes improvements in doping technologies and reductions in interface state density or carrier traps. These will be vital research goals for the future of diamond-based MOSFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Reggiani, S. Bosi, C. Canali, F. Nava, and S.F. Kozlov, Hole-drift velocity in natural diamond, Phys. Rev. B, 23(1981), No. 6, p. 3050.

    Article  CAS  Google Scholar 

  2. J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D.J. Twitchen, A.J. Whitehead, S.E. Coe, and G.A. Scarsbrook, High carrier mobility in single-crystal plasma-deposited diamond, Science, 297(2002), No. 5587, p. 1670.

    Article  CAS  Google Scholar 

  3. C.J.H. Wort and R.S. Balmer, Diamond as an electronic material, Mater. Today, 11(2008), No. 1–2, p. 22.

    Article  CAS  Google Scholar 

  4. S. Shikata, Single crystal diamond wafers for high power electronics, Diamond Relat. Mater., 65(2016), p. 168.

    Article  CAS  Google Scholar 

  5. H. Umezawa, M. Nagase, Y. Kato, and S. Shikata, High temperature application of diamond power device, Diamond Relat. Mater., 24(2012), p. 201.

    Article  CAS  Google Scholar 

  6. H. Kawarada, T. Yamada, D. Xu, H. Tsuboi, Y. Kitabayashi, D. Matsumura, M. Shibata, T. Kudo, M. Inaba, and A. Hiraiwa, Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications, Sci. Rep., 7(2017), art. No. 42368.

  7. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, New Jersey, 2006.

    Book  Google Scholar 

  8. B.J. Baliga, Fundamentals of Power Semiconductor Device, Springer, Boston, MA, 2008.

    Book  Google Scholar 

  9. J.B. Cui, J. Ristein, and L. Ley, Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface, Phys. Rev. Lett., 81(1998), No. 2, p. 429.

    Article  CAS  Google Scholar 

  10. K.G. Crawford, L. Cao, D. Qi, A. Tallaire, E. Limiti, C. Verona, A.T.S. Wee, and D.A.J. Moran, Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability, Appl. Phys. Lett., 108(2016), No. 4, art. No. 042103.

    Article  Google Scholar 

  11. M. Kasu, Diamond field-effect transistors for RF power electronics: Novel NO2 hole doping and low-temperature deposited Al2O3 passivation, Jpn. J. Appl. Phys., 56(2016), No. 1S, art. No. 01AA01.

  12. M. Kasu, K. Hirama, K. Harada, and T. Oishi, Study on capacitance-voltage characteristics of diamond field-effect transistors with NO2 hole doping and Al2O3 gate insulator layer, Jpn. J. Appl. Phys., 55(2016), No. 4, art. No. 041301.

  13. F. Maier, M. Riedel. B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett., 85(2000), No. 16, p. 3472.

    Article  CAS  Google Scholar 

  14. J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, and Y. Koide, Electrical characteristics of hydrogen-terminated diamond metal-oxide-semiconductor with atomic layer deposited HfO2 as gate dielectric, Appl. Phys. Lett., 102(2013), No. 11, art. No. 112910.

    Article  Google Scholar 

  15. M. Syamsul, Y. Kitabayashi, D. Matsumura, T. Saito, Y. Shintani, and H. Kawarada, High voltage breakdown (1.8 kV) of hydrogenated black diamond field effect transistor, Appl. Phys. Lett., 109(2016), No. 20, art. No. 203504.

    Article  Google Scholar 

  16. H. Kawarada, T. Yamada, D. Xu, Y. Kitabayashi, M. Shibata, D. Matsumura, M. Kobayashi, T. Saito, T. Kudo, M. Inaba, and A. Hiraiwa, Diamond MOSFETs using 2D hole gas with 1700V breakdown voltage, [in] Proceedings of the 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Munich, 2016, p. 483.

    Chapter  Google Scholar 

  17. Y. Kitabayashi, T. Kudo, H. Tsuboi, T. Yamada, D. Xu, M. Shibata, D. Matsumura, Y. Hayashi, M. Syamsul, M. Inaba, A. Hiraiwa, and H. Kawarada, Normally-off C-H diamond MOSFETs with partial C-O channel achieving 2kV breakdown voltage, IEEE Elect. Dev. Lett., 38(2017), No. 3, p. 363.

    Article  CAS  Google Scholar 

  18. D. Takeuchi, H. Kato, G.S. Ri, T. Yamada, P.R. Vinod, D. Hwang, C.E. Nebel, H. Okushi, and S. Yamasaki, Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces, Appl. Phys. Lett., 86(2005), No. 15, art. No. 152103.

    Article  Google Scholar 

  19. G.S. Gildenblat, S.A. Grot, C.W. Hatfield, and A.R. Badzian, High-temperature thin-film diamond field-effect transistor fabricated using a selective growth method, IEEE Elect. Dev. Lett., 12(1991), No. 2, p. 37.

    Article  CAS  Google Scholar 

  20. M. Aoki and H. Kawarada, Electric properties of metal/ diamond interfaces utilizing hydrogen-terminated surfaces of homoepitaxial diamonds, Jpn. J. Appl. Phys., 33(1994), No. 5B, p. L708.

  21. K.K. Kovi, Ö. Vallin, S. Majdi, and J. Isberg, Inversion in metal-oxide-semiconductor capacitors on boron-doped diamond, IEEE Elect. Dev. Lett., 36(2015), No. 6, p. 603.

    Article  CAS  Google Scholar 

  22. J.L. Liu, L.X. Chen, Y.T. Zheng, J.T. Wang, Z.H. Feng, and C.M. Li, Carrier transport characteristics of H-terminated diamond films prepared using molecular hydrogen and atomic hydrogen, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 850.

    Article  CAS  Google Scholar 

  23. M. Imura, R. Hayakawa, H. Ohsato, E. Watanabe, D. Tsuya, T. Nagata, M.Y. Liao, Y. Koide, J. Yamamoto, K. Ban, M. Iwaya, and H. Amano, Development of AlN/diamond heterojunction field effect transistors, Diamond Relat. Mater., 24(2012), p. 206.

    Article  CAS  Google Scholar 

  24. J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, A. Tanaka, H. Iwai, and Y. Koide, Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors, J. Appl. Phys., 114(2013), No. 8, art. No. 084108.

  25. J.W. Liu, M.Y. Liao, M. Imura, E. Watanabe, H. Oosato, and Y. Koide, Diamond field effect transistors with a high-dielectric constant Ta2O5 as gate material, J. Phys. D, 47(2014), No. 24, art. No. 245102.

  26. J. Liu, M. Liao, M. Imura, A. Tanaka, H. Iwai, and Y. Koide, Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric, Sci. Rep., 4(2014), art. No. 6395.

  27. J.W. Liu, H. Oosato, M.Y. Liao, and Y. Koide, Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator, Appl. Phys. Lett., 110(2017), No. 20, art. No. 203502.

    Article  Google Scholar 

  28. J.W. Liu, M.Y. Liao, M. Imura, R.G. Banal, and Y. Koide, Deposition of TiO2/Al2O3 bilayer on hydrogenated diamond for electronic devices: Capacitors, field-effect transistors, and logic inverters, J. Appl. Phys., 121(2017), No. 22, art. No. 224502.

  29. J.W. Liu, M.Y. Liao, M. Imura, and Y. Koide, High-k ZrO2/Al2O3 bilayer on hydrogenated diamond: Band configuration, breakdown field, and electrical properties of field-effect transistors, J. Appl. Phys., 120(2016), No. 12, art. No. 124504.

  30. J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, and Y. Koide, Electrical properties of atomic layer deposited HfO2/Al2O3 multilayer on diamond, Diamond Relat. Mater., 54(2015), p. 55.

    Article  CAS  Google Scholar 

  31. R.G. Banal, M. Imura, J.W. Liu, and Y. Koide, Structural properties and transfer characteristics of sputter deposition AlN and atomic layer deposition Al2O3 bilayer gate materials for H-terminated diamond field effect transistors, J. Appl. Phys., 120(2016), No. 11, art. No. 115307.

    Article  Google Scholar 

  32. J.W. Liu, M.Y. Liao, M. Imura, T. Matsumoto, N. Shibata, Y. Ikuhara, and Y. Koide, Control of normally on/off characteristics in hydrogenated diamond metal-insulator-semiconductor field-effect transistors, J. Appl. Phys., 118(2015), No. 11, art. No. 115704.

    Article  Google Scholar 

  33. S. Russell, S. Sharabi, A. Tallaire, and D.A.J. Moran, RF operation of hydrogen-terminated diamond field effect transistors: a comparative study, IEEE Trans. Electron Devices, 62(2015), No. 3, p. 751.

    Article  CAS  Google Scholar 

  34. J.W. Liu, H. Ohsato, M.Y. Liao, M. Imura, E. Watanabe, and Y. Koide, Logic circuits with hydrogenated diamond field-effect transistors, IEEE Electron Devices Lett., 38(2017), No. 7, p. 922.

    Article  CAS  Google Scholar 

  35. M.Y. Liao, J.W. Liu, L.W. Sang, D. Coathup, J.L. Li, M. Imura, Y. Koide, and H.T. Ye, Impedance analysis of Al2O3/H-terminated diamond metal-oxide-semiconductor structures, Appl. Phys. Lett., 106(2015), No. 8, art. No. 083506.

  36. H.Y. Wong, N. Braga, and R.V. Mickevicius, Prediction of highly scaled hydrogen-terminated diamond MISFET performance based on calibrated TCAD simulation, Diamond Relat. Mater., 80(2017), p. 14.

    Article  CAS  Google Scholar 

  37. H.Y. Wong, N. Braga, and R.V. Mickevicius, A physical model of the abnormal behavior of hydrogen-terminated Diamond MESFET, [in] 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kamakura, 2017, p. 333.

    Chapter  Google Scholar 

  38. Y. Fu, R.M. Xu, Y.H. Xu, J.J. Zhou, Q.Z. Wu, Y.C. Kong, Y. Zhang, T.S. Chen, and B. Yan, Characterization and modeling of hydrogen-terminated MOSFETs with single-crystal and polycrystalline diamond, IEEE Electron Devices Lett., 39(2018), No. 11, p. 1704.

    Article  CAS  Google Scholar 

  39. Y. Fu, Y.H. Xu, R.M. Xu, J.J. Zhou, and Y.C. Kong, Physical-based simulation of DC characteristics of hydrogen-terminated diamond MOSFETs, [in] 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Haining, 2017, p. 1.

    Google Scholar 

  40. K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D.J. Twitchen, G.A. Scarsbrook, and S.E. Coe, Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz, IEEE Electron Devices Lett., 27(2006), No. 7, p. 570.

    Article  CAS  Google Scholar 

  41. J.J. Wang, Z.Z. He, C. Yu, X.B. Song, P. Xu, P.W. Zhang, H. Guo, J.L. Liu, C.M. Li, S.J. Cai, and Z.H. Feng, Rapid deposition of polycrystalline diamond film by DC arc plasma jet technique and its RF MESFETs, Diamond Relat. Mater., 43(2014), p. 43.

    Article  CAS  Google Scholar 

  42. T.T. Pham, A. Maréchal, P. Muret, D. Eon, E. Gheeraert, N. Rouger, and J. Pernot, Comprehensive electrical analysis of metal/Al2O3/O-terminated diamond capacitance, J. Appl. Phys., 123(2018), No. 16, art. No. 161523.

    Article  Google Scholar 

  43. T.T. Pham, J. Pernot, G. Perez, D. Eon, E. Gheeraert, and N. Rouger, Deep-depletion mode boron-doped monocrystalline diamond metal oxide semiconductor field effect transistor, IEEE Electron Devices Lett., 38(2017), No. 11, p. 1571.

    Article  CAS  Google Scholar 

  44. T.T. Pham, N. Rouger, C. Masante, G. Chicot, F. Udrea, D. Eon, E. Gheeraert, and J. Pernot, Deep depletion concept for diamond MOSFET, Appl. Phys. Lett., 111(2017), No. 17, art. No. 173503.

    Article  Google Scholar 

  45. T. Matsumoto, H. Kato, K. Oyama, T. Makino, M. Ogura, D. Takeuchi, T. Inokuma, N. Tokuda, and S. Yamasaki, Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics, Sci. Rep., 6(2016), art. No. 31585.

  46. T. Matsumoto, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Yamasaki, M. Imura, A. Ueda, T. Inokuma, and N. Tokuda, Direct observation of inversion capacitance in p-type diamond MOS capacitors with an electron injection layer, Jpn. J. Appl. Phys., 57(2018), No. 4S, art. No. 04FR01.

    Article  Google Scholar 

  47. A. Maréchal, M. Aoukar, C. Vallée, C. Rivière, D. Eon, J. Pernot, and E. Gheeraert, Energy-band diagram configuration of Al2O3/oxygen-terminated p-diamond metal-oxide-semiconductor, Appl. Phys. Lett., 107(2015), No. 14, art. No. 141601.

    Article  Google Scholar 

  48. J.W. Liu, M.Y. Liao, M. Imura, and Y. Koide, Band offsets of Al2O3 and HfO2 oxides deposited by atomic layer deposition technique on hydrogenated diamond, Appl. Phys. Lett., 101(2012), No. 25, art. No. 252108.

  49. T.T. Pham, M. Gutiérrez, C. Masante, N. Rouger, D. Eon, E. Gheeraert, D. Araùjo, and J. Pernot, High quality Al2O3/(100) oxygen-terminated diamond interface for MOSFETs fabrication, Appl. Phys. Lett., 112(2018), No. 10, art. No. 102103.

    Article  Google Scholar 

  50. A. Tallaire, J. Achard, F. Silva, O. Brinza, and A. Gicquel, Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges, C. R. Phys., 14(2013), No. 2–3, p. 169.

    Article  CAS  Google Scholar 

  51. H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, A 2-in. mosaic wafer made of a single-crystal diamond, Appl. Phys. Lett., 104(2014), No. 10, art. No. 102110.

    Article  Google Scholar 

  52. M. Schreck, S. Gsell, R. Brescia, and M. Fischer, Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers, Sci. Rep., 7(2017), art. No. 44462.

  53. S. Koizumi, H. Umezawa, J. Pernot, amd M. Suzuki, Power Electronics Device Applications of Diamond Semiconductors, Woodhead Publishing, Cambridge, 2018, p. 383.

    Google Scholar 

  54. S. Bohr, R. Haubner, and B. Lux, Influence of phosphorus addition on diamond CVD, Diamond Relat. Mater., 4(1995), No. 2, p. 133.

    Article  CAS  Google Scholar 

  55. S.N. Demlow, R. Rechenberg, and T. Grotjohn, The effect of substrate temperature and growth rate on the doping efficiency of single crystal boron doped diamond, Diamond Relat. Mater., 49(2014), p. 19.

    Article  CAS  Google Scholar 

  56. T. Matsumoto, H. Kato, N. Tokuda, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, and S. Yamasaki, Reduction of n-type diamond contact resistance by graphite electrode, Phys. Status Solidi RRL, 8(2014), No. 2, p. 137.

    Article  CAS  Google Scholar 

  57. S. Mi, A. Toros, T. Graziosi and N. Quack, Non-contact polishing of single crystal diamond by ion beam etching, Diamond Relat. Mater., 92(2019), p. 248.

    Article  CAS  Google Scholar 

  58. F.N. Li, J.W. Liu, J.W. Zhang, X.L. Wang, W. Wang, Z.C. Liu, and H.X. Wang, Measurement of barrier height of Pd on diamond (100) surface by X-ray photoelectron spectroscopy, Appl. Surf. Sci., 370(2016), p. 496.

    Article  CAS  Google Scholar 

  59. F. Li, J. Zhang, X. Wang, Z. Liu, W. Wang, S. Li, and H.X. Wang, X-ray photoelectron spectroscopy study of Schottky junctions based on oxygen-/fluorine-terminated (100) diamond, Diamond Relat. Mater., 63(2016), p. 180.

    Article  CAS  Google Scholar 

  60. J. Wang, G. Wang, D. Wang, S. Li, and P. Zeng, A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam, Sci. Rep., 8(2018), No. 1, art. No. 6978.

Download references

Acknowledgements

This project was financially supported by the National Key Research and Development Program of China (No. 2018YFB0406501), the Beijing Municipal Science and Technology Commission (No. Z181100004418009), and the National Natural Science Foundation of China (No. 51702313).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-ming Li or Peng Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Xl., Zheng, Yt., Zhu, Xh. et al. Recent progress in diamond-based MOSFETs. Int J Miner Metall Mater 26, 1195–1205 (2019). https://doi.org/10.1007/s12613-019-1843-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1843-4

Keywords

Navigation