Skip to main content
Log in

Effect of ash on coal structure and combustibility

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Four bituminous coals and one anthracite were used in this study. On the basis of the similar volatile matter contents of the four bituminous coals, the effects of ash in coal on the microstructure, carbonaceous structure, and chemical composition of pulverized coal were studied. Thermogravimetric analysis was used to study the effect of the addition of anthracite on the combustibility of four different bituminous coals. The results showed that with the increase of ash content in pulverized coal, the microstructure of carbon particles in coal was not much different. However, the analysis results of Raman spectroscopy and X-ray diffraction pattern showed that as the ash content increased, the degree of graphitization of coal carbonaceous structure gradually decreased. The combustibility of the four bituminous coals were better than that of the anthracite. When bituminous coal and anthracite were mixed and burned, the combustibility of the mixed sample decreased as the ash content increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Steer, R. Marsh, M. Greenslade, and A. Ribinson, Opportunities to improve the utilisation of granulated coals for blast furnace injection, Fuel, 151(2015), p. 40.

    Article  Google Scholar 

  2. P.C. Li, J.L. Zhang, R.S. Xu, and T.F. Song, Representation of characteristics for modified coal, simi-coke and coke used in blast furnace injection, Energy Metall. Ind., 34(2015), No. 3, p. 41.

    Google Scholar 

  3. J.H. Liao, A.B. Yu, and Y.S. Shen, Modelling the injection of upgraded brown coals in an ironmaking blast furnace, Powder Technol., 314(2017), p. 550.

    Article  Google Scholar 

  4. S. Ren, S.L. Li, J. Yang, H.M. Long, J. Yang, M. Kong, J. Yang, and Z.L. Cai, Poisoning effects of KCl and As2O3 on selective catalytic reduction of NO with NH3 over Mn-Ce/AC catalysts at low temperature, Chem. Eng. J., 351(2018), p. 540.

    Article  Google Scholar 

  5. J.M.K. O’keefe, A. Bechtel, K. Christains, S.F. Dai, W.A. DiMichele, C.F. Eble, J.S. Esterle, M. Mastalerz, A.L. Raymond, B.V. Valentim, N.J. Wagner, C.R. Ward, and J.C. Hower, On the fundamental difference between coal rank and coal type, Int. J. Coal Geol., 118(2013), p. 58.

    Article  Google Scholar 

  6. D.J. Casagrande, G. Idowu, A. Friedman, P. Rickert, K. Siefert, and D. Schlenz, H2S incorporation in coal precursors: Origins of organic sulphur in coal, Nature, 282(1979), p. 599.

    Article  Google Scholar 

  7. Z.Y. Gao, L.J. Fang, X.M. Ye, and W.P. Yan, Thermal gravity investigation on combustion performance of blended coal from anthracite and bituminous, J. North China Electric Power Univ., 28(2001), No. 1, p. 1.

    Google Scholar 

  8. T. Xu, X.J. Ning, G.W. Wang, W. Liang, J.L. Zhang, Y.J. Li, H.Y. Wang, and C.H. Jiang, Combustion characteristics and kinetic analysis of co-combustion betweenbag dust and pulverized coal, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1412.

    Article  Google Scholar 

  9. R.S. Xu, J.L. Zhang, T.F. Song, H.Y. Wang, and D. Zhao, The research on process characteristics of different fuels for blast furnace injection, [in] The 6th International Symposium on High-Temperature Metallurgical Processing, Orlando, 2015, p. 357.

  10. H.B. Zuo, W.W. Geng, J.L. Zhang, and G.W. Wang, Comparison of kinetic models for isothermal CO2 gasification of coal char-biomass char blended char, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 363.

    Article  Google Scholar 

  11. D.W. Kim, J.M. Lee, J.S. Kim, and P.K. Seon, Study on the combustion characteristics of wood-pellet and Korean anthracite using TGA, Korean Chem. Eng. Res., 48(2010), p. 58.

    Google Scholar 

  12. R. Friedel and J.A. Queiser, Infrared analysis of bituminous coals and other carbonaceous materials, Anal. Chem., 28(1956), No. 1, p. 22.

    Article  Google Scholar 

  13. L. Lu, V. Sahajwalla, C. Kong, and D. Harris, Quantitative X-ray diffraction analysis and its application to various coals, Carbon, 39(2001), No. 12, p. 1821.

    Article  Google Scholar 

  14. W.C. Xia, J.G. Yang, and C. Liang, Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM, Appl. Surf. Sci., 293(2014), p. 293.

    Article  Google Scholar 

  15. C. Wang, J.L. Zhang, G.W. Wang, K.X. Jiao, Z.J. Liu, and K.C. Chou, Combustion characteristics and kinetics of anthracite with added chlorine, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 745.

    Article  Google Scholar 

  16. X.G. Li, B.G. Ma, L. Xu, Z.T. Luo, and K. Wang, Catalytic effect of metallic oxides on combustion behavior of high ash coal, Energy Fuels, 21(2007), No. 5, p. 2669.

    Article  Google Scholar 

  17. G.W. Wang, J.L. Zhang, J.G. Shao, Z.J. Liu, G.H. Zhang, T. Xu, J. Guo, H.Y. Wang, R.S. Xu, and H. Lin, Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends, Energy Convers. Manage., 124(2016), p. 414.

    Article  Google Scholar 

  18. G.W. Wang, J.L. Zhang, G.H. Zhang, X.J. Ning, X.Y. Li, Z.J. Liu, and J. Guo, Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends, Energy, 131(2017), p. 27.

    Article  Google Scholar 

  19. G.W. Wang, J.L. Zhang, X. Huang, X.H. Liang, X.J. Ning, and R.P. Li, Co-gasification of petroleum coke-biomass blended char with steam at temperatures of 1173–1373 K, Appl. Therm. Eng., 137(2018), p. 678.

    Article  Google Scholar 

  20. C. Zou, C.B. Wang, H.M. Liu, H.F. Wang, and Y. Zhang, Effect of olatile and ash contents in coal on the volatilization of arsenic during isothermal coal combustion, Energy Fuels, 31(2017), No. 11, p. 12831.

    Article  Google Scholar 

  21. G.W. Wang, J.L. Zhang, J.G. Shao, Z.J. Liu, H.Y. Wang, X.Y. Li, P.C. Zhang, W.W. Geng, and G.H. Zhang, Experimental and modeling studies on CO2 gasification of biomass chars, Energy, 114(2016), p. 143.

    Article  Google Scholar 

  22. B. Manoj and A.G. Kunjomana, Structural characterization of selected Indian coals by X-ray diffraction and spectroscopic techniques, Trends Appl. Sci. Res., 7(2012), No. 6, p. 434.

    Article  Google Scholar 

  23. D. Wu, G.J. Liu, R.Y. Sun, and F. Xiang, Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction, Energy Fuels, 27(2013), No. 10, p. 5823.

    Article  Google Scholar 

  24. K.J. Li, R. Khanna, J.L. Zhang, M. Barati, Z.J. Liu, T. Xu, T.J. Yang, and V. Sahajwalla, Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques, Energy Fuels, 29(2015), No. 11, p. 7178.

    Article  Google Scholar 

  25. R.S. Xu, B.W. Dai, W. Wang, J. Schenk, A. Bhattacharyya, and Z.L. Xue, Gasification reactivity and structure evolution of metallurgical coke under H2O/CO2 atmosphere, Energy Fuels, 32(2018), No. 2, p. 1188.

    Article  Google Scholar 

  26. M.L.S. Oliveira, C.R. Ward, C.H. Sampaio, X. Querol, C.M.N.L. Cutruneo, S.R. Taffarel, and L.F.O. Silva, Partitioning of mineralogical and inorganic geochemical components of coals from Santa Catarina, Brazil, by industrial beneficiation processes, Int. J. Coal Geol., 116–117(2013), p. 75.

    Article  Google Scholar 

  27. L.J. Zhang, Z.H. Li, Y.L. Yang, Y.B. Zhou, B. Kong, J.H. Li, and L.L. Si, Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal, Fuel, 184(2016), p. 418.

    Article  Google Scholar 

  28. X.J. Li, J.I. Hayashi, and C.Z. Li, FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal, Fuel, 85(2006), No. 12–13, p. 1700.

    Article  Google Scholar 

  29. X.P. Zou, L. Ding, X. Liu, Q.H. Guo, H.F. Lu, and X. Gong, Study on effects of ash on the evolution of physical and chemical structures of char during CO2 gasification, Fuel, 217(2018), p. 587.

    Article  Google Scholar 

  30. B.G. Ma, X.G. Li, L. Xu, K. Wang, and X.G. Wang, Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis, Thermochim. Acta, 445(2006), No. 1, p. 19.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation for Young Scientists of China (No. 51804026) and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (No. 2017QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Xj., Liang, W., Zhang, Jl. et al. Effect of ash on coal structure and combustibility. Int J Miner Metall Mater 26, 973–982 (2019). https://doi.org/10.1007/s12613-019-1812-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1812-y

Keywords

Navigation