Advertisement

Atomic modeling for the initial stage of chromium passivation

  • Li-nan Zhang
  • Xi-lin Xiong
  • Yu Yan
  • Ke-wei Gao
  • Li-jie Qiao
  • Yan-jing SuEmail author
Article
  • 35 Downloads

Abstract

The well-known anti-corrosive property of stainless steels is largely attributed to the addition of Cr, which can assist in forming an inert film on the corroding surface. To maximize the corrosion-resistant ability of Cr, a thorough study dealing with the passivation behaviors of this metal, including the structure and composition of the passive film as well as related reaction mechanisms, is required. Here, continuous electrochemical adsorptions of OH-groups of water molecules onto Cr terraces in acid solutions are investigated using DFT methods. Different models with various surface conditions are applied. Passivation is found to begin in the active region, and a fully coated surface mainly with oxide is likely to be the starting point of the passive region. The calculated limiting potentials are in reasonable agreement with passivation potentials observed via experiment.

Keywords

chromium acid solutions passive films interfaces modeling studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB0702100) and the National Natural Science Foundation of China (Nos. 51571028, 51431004, and U1706221). L.N. Zhang gratefully acknowledges financial support from China Scholarship Council.

References

  1. [1]
    X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: share corrosion data, Nature, 527(2015), p. 441.CrossRefGoogle Scholar
  2. [2]
    N. Ahmad and A.G. MacDiarmid, Inhibition of corrosion of steels with the exploitation of conducting polymers, Synth. Met., 78(1996), No. 2, p. 103.CrossRefGoogle Scholar
  3. [3]
    T. Misawa, K. Asami, K. Hashimoto, and S. Shimodaira, The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel, Corros. Sci., 14(1974), No. 4, p. 279.CrossRefGoogle Scholar
  4. [4]
    M. Stratmann, K. Bohnenkamp, and T. Ramchandran, The influence of copper upon the atmospheric corrosion of iron, Corros. Sci., 27(1987), No. 9, p. 905.CrossRefGoogle Scholar
  5. [5]
    T. Nishimura, H. Katayama, K. Noda, and T. Kodama, Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments, Corros. Sci., 42(2000), No. 9, p. 1611.CrossRefGoogle Scholar
  6. [6]
    T. Ujiro, S. Satoh, R.W. Staehle, and W.H. Smyrl, Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media, Corros. Sci., 43(2001), No. 11, p. 2185.CrossRefGoogle Scholar
  7. [7]
    Y.S. Choi, J.J. Shim, and J.G. Kim, Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water, J. Alloys Compd., 391(2005), No. 1–2, p. 162.CrossRefGoogle Scholar
  8. [8]
    A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, M. Carboneras, and R. Arrabal, Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels, Acta Mater., 55(2007), No. 7, p. 2239.CrossRefGoogle Scholar
  9. [9]
    N. Hara and K. Sugimoto, The study of the passivation films on Fe-Cr alloys by modulation spectroscopy, J. Electrochem. Soc., 126(1979), No. 8, p. 1328.CrossRefGoogle Scholar
  10. [10]
    M. Keddam, O.R. Mattos, and H. Takenouti, Mechanism of anodic dissolution of iron-chromium alloys investigated by electrode impedances—I. Experimental results and reaction model, Electrochim. Acta, 31(1986), No. 9, p. 1147.CrossRefGoogle Scholar
  11. [11]
    P. Marcus and J.M. Grimal, The anodic dissolution and passivation of NiCrFe alloys studied by ESCA, Corros. Sci., 33(1992), No. 5, p. 805.CrossRefGoogle Scholar
  12. [12]
    C.S. Wang, C.Y. Tsai, C.G. Chao, and T.F. Liu, Effect of chromium content on corrosion behaviors of Fe-9Al-30Mn-(3,5,6.5,8)Cr-1C alloys, Mater Trans., 48(2007), No. 4, p. 2973.CrossRefGoogle Scholar
  13. [13]
    B. Jegdić, D.M. Dražić, and J.P. Popić, Open circuit potentials of metallic chromium and austenitic 304 stainless steel in aqueous sulphuric acid solution and the influence of chloride ions on them, Corros. Sci., 50(2008), No. 5, p. 1235.CrossRefGoogle Scholar
  14. [14]
    K. Sugimoto and S. Matsuda, Passive and transpassive films on Fe-Cr alloys in acid and neutral solutions, Mater. Sci. Eng., 42(1980), p. 181.CrossRefGoogle Scholar
  15. [15]
    I. Olefjord, The passive state of stainless steels, Mater. Sci. Eng., 42(1980), p. 161.CrossRefGoogle Scholar
  16. [16]
    I. Olefjord, B. Brox, and U. Jelvestam, Surface composition of stainless steels during anodic dissolution and passivation studied by ESCA, J. Electrochem. Soc., 132(1985), No. 12, p. 2854.CrossRefGoogle Scholar
  17. [17]
    J.A.L. Dobbelaar and J.H.W. de Wit, Impedance measurements and analysis of the corrosion of chromium, J. Electrochem. Soc., 137(1990), No. 7, p. 2038.CrossRefGoogle Scholar
  18. [18]
    M. Metikoš-Huković and R. Babić, Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy, Corros. Sci., 49(2007), No. 9, p. 3570.CrossRefGoogle Scholar
  19. [19]
    M. Bojinov, G. Fabricius, T. Laitinen, T. Saario, and G. Sundholm, Conduction mechanism of the anodic film on chromium in acidic sulphate solutions, Electrochim. Acta, 44(1998), No. 2–3, p. 247.CrossRefGoogle Scholar
  20. [20]
    H.H. Uhlig, Fundamental factors in corrosion control, Corrosion, 4(1947), No. 3, p. 173.CrossRefGoogle Scholar
  21. [21]
    H.H. Uhlig, Passivity in metals and alloys, Corros. Sci., 19(1979), No. 7, p. 777.CrossRefGoogle Scholar
  22. [22]
    V.M. Kolotyrkin, Electrochemical behaviour and anodic passivity mechanism of certain metals in electrolyte solutions, Z. Elektrochem., 62(1958), No. 6–7, p. 664.Google Scholar
  23. [23]
    R.D. Armstrong, M. Henderson, and H.R. Thirsk, The impedance of chromium in the active-passive transition, J. Electroanal. Chem. Interfacial Electrochem., 35(1972), No. 1, p. 119.CrossRefGoogle Scholar
  24. [24]
    M.S. El-Basiouny and S. Haruyama, The polarization behaviour of chromium in acidic sulphate solutions, Corros. Sci., 17(1977), No. 5, p. 405.CrossRefGoogle Scholar
  25. [25]
    M. Okuyama, M. Kawakami, and K. Ito, Anodic dissolution of chromium in acidic sulphate solutions, Electrochim. Acta, 30(1985), No. 6, p. 757.CrossRefGoogle Scholar
  26. [26]
    L. Björnkvist and I. Olefjord, The electrochemistry of chromium in acidic chloride solutions: Anodic dissolution and passivation, Corros. Sci., 32(1991), No. 2, p. 231.CrossRefGoogle Scholar
  27. [27]
    M. Seo, R. Saito, and N. Sato, Ellipsometry and auger analysis of chromium surfaces passivated in acidic and neutral aqueous solutions, J. Electrochem. Soc., 127(1980), No. 9, p. 1909.CrossRefGoogle Scholar
  28. [28]
    T.P. Moffat and R.M. Latanision, An electrochemical and X-Ray photoelectron spectroscopy study of the passive state of chromium, J. Electrochem. Soc., 139(1992), No. 7, p. 1869.CrossRefGoogle Scholar
  29. [29]
    B. Stypula and J. Banaś, Passivity of chromium in sulphuric acid solutions, Electrochim. Acta, 38(1993), No. 15, p. 2309.CrossRefGoogle Scholar
  30. [30]
    V. Maurice, W.P. Yang, and P. Marcus, XPS and STM Investigation of the passive film formed on Cr(110) single-crystal surfaces, J. Electrochem. Soc., 141(1994), No. 11, p. 3016.CrossRefGoogle Scholar
  31. [31]
    D. Zuili, V. Maurice, and P. Marcus, In situ scanning tunneling microscopy study of the structure of the hydroxylated anodic oxide film formed on Cr(110) single-crystal surfaces, J. Phys. Chem. B, 103(1999), No. 37, p. 7896.CrossRefGoogle Scholar
  32. [32]
    H. Ma, X.Q. Chen, R.H. Li, S.L. Wang, J.H. Dong, and W. Ke, First-principles modeling of anisotropic anodic dissolution of metals and alloys in corrosive environments, Acta Mater., 130(2017), p. 137.CrossRefGoogle Scholar
  33. [33]
    N. Sato, An overview on the passivity of metals, Corros. Sci., 31(1990), p. 1.CrossRefGoogle Scholar
  34. [34]
    J.L. Lv and T.X. Liang, The effect of passivated potential on the passive films formed on pure chromium in borate buffer solution, Surf. Interface Anal., 49(2017), No. 6, p. 533.CrossRefGoogle Scholar
  35. [35]
    C.O. Olsson and D. Landolt, Passive films on stainless steels—chemistry, structure and growth, Electrochim. Acta, 48(2003), No. 9, p. 1093.CrossRefGoogle Scholar
  36. [36]
    J.A.L. Dobbelaar and J.H.W. de Wit, The corrosion behavior of polycrystalline and single crystal chromium a revised model, J. Electrochem. Soc., 139(1992), No. 3, p. 716.CrossRefGoogle Scholar
  37. [37]
    D. Caplan and G.I. Sproule, Effect of oxide grain structure on the high-temperature oxidation of Cr, Oxid. Met., 9(1975), No. 5, p. 459.CrossRefGoogle Scholar
  38. [38]
    M. Liu, D. Qiu, M.C. Zhao, G.L. Song, and A. Atrens, The effect of crystallographic orientation on the active corrosion of pure magnesium, Scripta Mater., 58(2008), No. 5, p. 421.CrossRefGoogle Scholar
  39. [39]
    G.L. Song and Z.Q. Xu, Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution, Corros. Sci., 54(2012), p. 97.CrossRefGoogle Scholar
  40. [40]
    L.D. Chen, J.K. Nørskov, and A.C. Luntz, Al-Air batteries: Fundamental thermodynamic limitations from first-principles theory, J. Phys. Chem. Lett., 6(2015), No. 1, p. 175.CrossRefGoogle Scholar
  41. [41]
    L.D. Chen, J.K. Nørskov, and A.C. Luntz, Theoretical limits to the anode potential in aqueous Mg-air batteries, J. Phys. Chem. C, 119(2015), No. 34, p. 19660.CrossRefGoogle Scholar
  42. [42]
    J.S. Hummelshoj, A.C. Luntz, and J.K. Nørskov, Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry, J. Chem. Phys., 138(2013), art. No. 034703.Google Scholar
  43. [43]
    V. Viswanathan, J.K. Norskov, A. Speidel, R. Scheffler, S. Gowda, and A.C. Luntz, Li-O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory, J. Phys. Chem. Lett., 4(2013), No. 4, p. 556.CrossRefGoogle Scholar
  44. [44]
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and H. Jønsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B, 108(2004), No. 46, p. 17886.CrossRefGoogle Scholar
  45. [45]
    J. Rossmeisl, J.K. Nørskov, C.D. Taylor, M.J. Janik, and M. Neurock, Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111), J. Phys. Chem. B, 110(2006), No. 43, p. 21833.CrossRefGoogle Scholar
  46. [46]
    S. Meng, E.G. Wang, and S.W. Gao, Water adsorption on metal surfaces: a general picture from density functional theory studies, Phys. Rev. B, 69(2004), art. No. 195404.Google Scholar
  47. [47]
    A. Michaelides and K. Morgenstern, Ice nanoclusters at hydrophobic metal surfaces, Nat. Mater., 6(2007), p. 597.CrossRefGoogle Scholar
  48. [48]
    G.S. Karlberg, J. Rossmeisl, and J.K. Nørskov, Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory, Phys. Chem. Chem. Phys., 9(2007), No. 37, p. 5158.CrossRefGoogle Scholar
  49. [49]
    P. Giannozzi, S. Baroni, N. Bonini, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21(2009), No. 39, art. No. 395502Google Scholar
  50. [50]
    S.R. Bahn and K.W. Jacobsen, An object-oriented scripting interface to a legacy electronic structure code, Comput. Sci. Eng., 4(2002), No. 3, p. 56.CrossRefGoogle Scholar
  51. [51]
    D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41(1990), p. 7892.CrossRefGoogle Scholar
  52. [52]
    B. Hammer, L.B. Hansen, and J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B, 59(1999), p. 7413.CrossRefGoogle Scholar
  53. [53]
    H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), p. 5188.CrossRefGoogle Scholar
  54. [54]
    S. Siahrostami, V. Tripkovic, K.T. Lundgaard, K.E. Jensen, H.A. Hansen, J.S. Hummelshøj, J.S.G. Mýrdal, T. Vegge, J.K. Nørskov, and J. Rossmeisl, First principles investigation of zinc-anode dissolution in zinc-air batteries, Phys. Chem. Chem. Phys., 15(2013), No. 17, p. 6416.CrossRefGoogle Scholar
  55. [55]
    H.A. Hansen, J. Rossmeisl, and J.K. Nørskov, Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT, Phys. Chem. Chem. Phys., 10(2008), p. 3722.CrossRefGoogle Scholar
  56. [56]
    S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, J. Phys. Chem. Ref. Data, 18(1989), p. 1.CrossRefGoogle Scholar
  57. [57]
    J.K. Nørskov, F. Studt, F. Abild-Pedersen, and T. Bligaard, Fundamental Concepts in Heterogeneous Catalysis, John Wiley & Sons, USA, 2014.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Li-nan Zhang
    • 1
    • 2
    • 3
  • Xi-lin Xiong
    • 1
    • 2
  • Yu Yan
    • 1
    • 2
  • Ke-wei Gao
    • 1
    • 2
  • Li-jie Qiao
    • 1
    • 2
  • Yan-jing Su
    • 1
    • 2
    Email author
  1. 1.Beijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE)University of Science and Technology BeijingBeijingChina
  3. 3.SUNCAT Center for Interface Science and CatalysisSLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations