Skip to main content
Log in

Effect of heat treatment on the microstructure and micromechanical properties of the rapidly solidified Mg61.7Zn34Gd4.3 alloy containing icosahedral phase

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this paper, the microstructure evolution of the rapidly solidified (RS) Mg61.7Zn34Gd4.3 (at%, atomic ratio) alloy at high temperatures was investigated. The hardness and elastic modulus of the main precipitated phases were also analyzed and compared with those of the α-Mg matrix on the basis of nanoindentation tests. The results show that the RS alloy consists of either a petal-like icosahedral quasicrystal (IQC) phase (~20 μm) and block-shaped H1 phase (~15 μm) or IQC particles with an average grain size of ~107 nm as well as a small proportion of amorphous phase, which mainly depends on the holding time at the liquid temperature and the thickness of the ribbons. The IQC phase gradually transforms at 400°C to a short-rod-shaped μ-phase (Mg28.6Zn63.8Gd7.7) with a hexagonal structure. The hardness of the IQC phase is higher than that of H1 phase, and both phases exhibit a higher hardness than the α-Mg matrix and the μ-phase. The elasticity of the H1 phase is superior to that of the α-Mg matrix. The IQC phase possesses a higher elastic modulus than H1 phase. The easily formed H1 phase exhibits the poorest plastic deformation capacity among these phases but a higher elastic modulus than the α-Mg matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.C.T, Alloys of magnesium, Nature, 141(1938), p. 45.

  2. J.D. Robson, Critical assessment 9: Wrought magnesium alloys, Mater. Sci. Technol., 31(2015), No. 3, p. 257.

    Article  Google Scholar 

  3. B.L. Mordike and T. Ebert, Magnesium: properties-applications-potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37.

    Article  Google Scholar 

  4. S. Amani and G. Faraji, Recrystallization and mechanical properties of WE43 magnesium alloy processed via cyclic expansion extrusion, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 672.

    Article  Google Scholar 

  5. N. Tahreen and D.L. Chen, A critical review of Mg-Zn-Y Series alloys containing I, W, and LPSO phases, Adv. Eng. Mater., 18(2016), No. 12, p. 1983.

    Article  Google Scholar 

  6. L. Zhang, Z. Liu, and P.L. Mao, Effect of annealing on the microstructure and mechanical properties of Mg-2.5Zn-0.5Y alloy, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 779.

    Article  Google Scholar 

  7. D.V. Louzguine-Luzgin and A. Inoue, Formation and properties of quasicrystals, Annu. Rev. Mater. Res., 38(2008), p. 403.

    Article  Google Scholar 

  8. A.P. Tsai, A. Niikura, A. Inoue, T. Masumoto, Y. Nishida, K. Tsuda, and M. Tanaka, Highly ordered structure of icosahe-dral quasicrystals in Zn-Mg-RE (RE ≡ rare earth metals) systems, Philos. Mag. Lett. 70(1994), No. 3, p. 169.

    Article  Google Scholar 

  9. S. Ranganathan and K. Chattopadhyay, Quasicrystals, Annu. Rev. Mater. Res., 21(1991), No. 1, p. 437.

    Article  Google Scholar 

  10. W.A. Cassada, Y. Shen, S.J. Poon, and G.J. Shiflet, Mg32(Zn Al)49-type icosahedral quasicrystals formed by solid state reaction and rapid solidification, Phys. Rev. B, 34(1986), No. 10-15, p. 7413.

    Article  Google Scholar 

  11. D.H. Bae, S.H. Kim, D.H. Kim, and W.T. Kim, Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral qua-sicrystalline particles, Acta Mater., 50(2002), No. 9, p. 2343.

    Article  Google Scholar 

  12. D.K. Xu, T.T. Zu, M. Yin, Y.B. Xu, and E.H. Han, Mechanical properties of the icosahedral phase reinforced duplex Mg-Li alloy both at room and elevated temperatures, J. Alloys Compd., 582(2014), p. 161.

    Article  Google Scholar 

  13. A. Singh, M. Nakamura, M. Watanabe, A. Kato, and A.P. Tsai, Quasicrystal strengthened Mg-Zn-Y alloys by extrusion, Scripta Mater., 49(2003), No. 5, p. 417.

    Article  Google Scholar 

  14. X.D. Wang, W.B. Du, Z.H. Wang, K. Liu, and S.B. Li, Microstructures and mechanical properties of quasicrystal reinforced AZ31 matrix composites, Mater. Sci. Eng. A, 530(2011), p. 446.

    Article  Google Scholar 

  15. A.P. Tsai, Discovery of stable icosahedral quasicrystals: progress in understanding structure and properties, Chem. Soc. Rev., 42(2013), No. 12, p. 5352.

    Article  Google Scholar 

  16. J. Gröbner, A. Kozlov, X.Y. Fang, S.M. Zhu, J.F. Nie, M.A. Gibson, and R. Schmid-Fetzer, Phase equilibria and transformations in ternary Mg-Gd-Zn alloys, Acta Mater., 90(2015), p. 400.

    Article  Google Scholar 

  17. J.F. Liu, Z.Q. Yang, and H.Q. Ye, In situ transmission electron microscopy investigation of quasicrystal-crystal transformations in Mg-Zn-Y alloys, J. Alloys Compd., 621(2015), p. 179.

    Article  Google Scholar 

  18. S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, and A.L. Greer, Rejuvenation of metallic glasses by non-affine thermal strain, Nature, 524(2015), No. 7564, p. 200.

    Article  Google Scholar 

  19. Y.N. Wang, J. Yang, and Y.P. Bao, Effects of non-metallic inclusions on machinability of free-cutting steels investigated by nano-indentation measurement, Metall. Mater. Trans. A, 46(2015), No. 1, p. 281.

    Article  Google Scholar 

  20. A. Rahnama, H. Kotadia, S. Clark, V. Janik, and S. Sridhar, Nano-mechanical properties of Fe-Mn-Al-C lightweight steels, Sci. Rep., 8(2018), art. No. 9065.

  21. A.C. Fisher-Cripps, Nanoidentation, Springer, New York, 2012, p. 60.

    Google Scholar 

  22. R. Yang, Q. Zhang, P. Xiao, J. Wang, and Y.L. Bai, Two opposite size effects of hardness at real nano-scale and their distinct origins, Sci. Rep., 7(2017), art. No. 10653.

  23. J.Y. Zhang, P. Jia, D.G. Zhao, G.R. Zhou, and X.Y. Teng, Melt holding time as an important factor on the formation of quasicrystal phase in Mg67Zn30Gd3 alloy, Physica B, 533(2018), p. 28.

    Article  Google Scholar 

  24. D.B. Miracle, A structural model for metallic glasses, Nat. Mater., 3(2004), No. 10, p. 697.

    Article  Google Scholar 

  25. K. Sugiyama, K. Yasuda, T. Ohsuna, and K. Hiraga, The structures of hexagonal phases in Mg-Zn-RE (RE = Sm and Gd) alloys, Z. Kristallogr., 213(1998), No. 10, p. 537.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Youth Science Fund Project of National Natural Science Fund of China (No. 51401070). We also gratefully acknowledge Dr. Li You from University of Science and Technology Beijing for the discussion of TEM results’ analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-min Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Wb., Xue, Zy. & Mao, Wm. Effect of heat treatment on the microstructure and micromechanical properties of the rapidly solidified Mg61.7Zn34Gd4.3 alloy containing icosahedral phase. Int J Miner Metall Mater 26, 869–877 (2019). https://doi.org/10.1007/s12613-019-1799-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1799-4

Keywords

Navigation