Carbon deposition in porous nickel/yttria-stabilized zirconia anode under methane atmosphere

  • Zhi-yuan Chen
  • Li-jun WangEmail author
  • Xiao-jia Du
  • Zai-hong Sun
  • Fu-shen Li
  • Kuo-Chih Chou


A commercial solid oxide fuel cell with a Ni/YSZ anode was characterized under a pure methane atmosphere. The amount of deposited carbon increased with an increase in temperature but decreased when the temperature exceeded 700°C. The reactivity of carbon decreased with increasing deposition temperature. Filamentous carbon was deposited from 400 to 600°C, whereas flake carbon was deposited at 700 and 800°C. With increasing temperature, the intensity ratio of the D band over the sum of the G and D bands was constant at the beginning and then decreased with the transformation of the carbon morphology. The crystallite size increased from 2.9 to 13 nm with increasing temperature. The results also indicated that the structure of the deposited carbon was better ordered with increasing deposition temperature. In comparison with pure Ni powders, the interaction between the YSZ substrate and Ni particles could not only modify the carbon deposition kinetics but also reduce the temperature effect on the structure and reactivity variation of carbon.


solid oxide fuel cell coking Raman spectrum hydrocarbon fuel anode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Program on Key Basic Research Project of China (No. 2012CB215405). We are also immensely grateful to the kind help of Dr. Prakash Venkatesan from Delft University of Technology for his comments on the draft.


  1. [1]
    E.S. Hecht, G.K. Gupta, H.Y. Zhu, A.M. Dean, R.J. Kee, L. Maier, and O. Deutschmann, Methane reforming kinetics within a Ni-YSZ SOFC anode support, Appl. Catal. A, 295(2005), No. 1, p. 40.Google Scholar
  2. [2]
    H. Sumi, Y.H. Lee, H. Muroyama, T. Matsui, and K. Eguchi, Comparison between internal steam and CO2 reforming of methane for Ni-YSZ and Ni-ScSZ SOFC anodes, J. Electrochem. Soc., 157(2010), No. 8, p. B1118.Google Scholar
  3. [3]
    E.P. Murray, T. Tsai, and S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature, 400(1999), No. 6745, p. 649.Google Scholar
  4. [4]
    S. Park, R. Craciun, J.M. Vohs, and R.J. Gorte, Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. Methane oxidation, J. Electrochem. Soc., 146(1999), No. 10, p. 3603.Google Scholar
  5. [5]
    S. Park, J.M. Vohs, and R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature, 404(2000), No. 6775, p. 265.Google Scholar
  6. [6]
    T. Kim, S. Moon, and S.I. Hong, Internal carbon dioxide reforming by methane over Ni-YSZ-CeO2 catalyst electrode in electrochemical cell, Appl. Catal. A, 224(2002), No. 1–2, p. 111.Google Scholar
  7. [7]
    I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro, and A. Sodo, Ni/CeO2-Al2O3 catalysts for the dry reforming of methane: The effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance, Appl. Catal. A, 500(2015), p. 12.Google Scholar
  8. [8]
    J. Macek, B. Novosel, and M. Marinšek, Ni-YSZ SOFC anodes—Minimization of carbon deposition, J. Eur. Ceram. Soc., 27(2007), No. 2–3, p. 487.Google Scholar
  9. [9]
    T. Takeguchi, Y. Kani, T. Yano, R. Kikuchi, K. Eguchi, K. Tsujimoto, Y. Uchida, A. Ueno, K. Omoshiki, and M. Aizawa, Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets, J. Power Sources, 112(2002), No. 2, p. 588.Google Scholar
  10. [10]
    H. Sumi, K. Ukai, Y. Mizutani, H. Mori, C.J. Wen, H. Takahashi, and O. Yamamoto, Performance of nickel-scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O-CH4, Solid State Ionics, 174(2004), No. 1–4, p. 151.Google Scholar
  11. [11]
    K. Ke, A. Gunji, H. Mori, S. Tsuchida, H. Takahashi, K. Ukai, Y. Mizutani, H. Sumi, M. Yokoyama, and K. Waki, Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs, Solid State Ionics, 177(2006), No. 5–6, p. 541.Google Scholar
  12. [12]
    H. Takahashi, T. Takeguchi, N. Yamamoto, M. Matsuda, E. Kobayashi, and W. Ueda, Effect of interaction between Ni and YSZ on coke deposition during steam reforming of methane on Ni/YSZ anode catalysts for an IR-SOFC, J. Mol. Catal. A, 350(2011), No. 1–2, p. 69.Google Scholar
  13. [13]
    T. Horita, K. Yamaji, T. Kato, N. Sakai, and H. Yokokawa, Design of metal/oxide interfaces for the direct introduction of hydrocarbons into SOFCs, J. Power Sources, 131(2004), No. 1, p. 299.Google Scholar
  14. [14]
    J. Kubota, S. Hashimoto, T. Shindo, K. Yashiro, T. Matsui, K. Yamaji, H. Kishimoto, and T. Kawada, Self-modification of Ni metal surfaces with CeO2 to suppress carbon deposition at solid oxide fuel cell anodes, Fuel Cells, 17(2017), No. 3, p. 402.Google Scholar
  15. [15]
    Z.Y. Chen, L.Z. Bian, L.J. Wang, Z.Y. Yu, H.L. Zhao, F.S. Li, and K.C. Chou, Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850°C, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 574.Google Scholar
  16. [16]
    H.S. Bengaard, J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, and J.R. Rostrup-Nielsen, Steam reforming and graphite formation on Ni catalysts, J. Catal., 209(2002), No. 2, p. 365.Google Scholar
  17. [17]
    A. Oberlin, M. Endo, and T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth, 32(1976), No. 3, p. 335.Google Scholar
  18. [18]
    Z.Y. Chen, L.J. Wang, Y.D. Gong, D. Tang, F.S. Li, and K.C. Chou, Effect of ozone on the performance of solid oxide fuel cell with Sm0.5Sr0.5CoO3 cathode, J. Power Sources, 255(2014), p. 59.Google Scholar
  19. [19]
    Z. Cheng and M. Liu, Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy, Solid State Ionics, 178(2007), No. 13–14, p. 925.Google Scholar
  20. [20]
    F. Li and J.S. Lannin, Disorder induced Raman scattering of nanocrystalline carbon, Appl. Phys. Lett., 61(1992), No. 17, p. 2116.Google Scholar
  21. [21]
    W.S. Bacsa, J.S. Lannin, D.L. Pappas, and J.J. Cuomo, Raman scattering of laser-deposited amorphous carbon, Phys. Rev. B, 47(1993), No. 16, p. 10931.Google Scholar
  22. [22]
    A.L. Pinheiro, A.N. Pinheiro, A. Valentini, J.M. Filho, F.F. de Sousa, J.R. de Sousa, C.R. M. da Graça, P. Bargiela, and A.C. Oliveira, Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming of methane, Catal. Commun., 11(2009), No. 1, p. 11.Google Scholar
  23. [23]
    A.E. Galetti, M.F. Gomez, L.A. Arrúa, and M.C. Abello, Ni catalysts supported on modified ZnAl2O4 for ethanol steam reforming, Appl. Catal. A, 380(2010), No. 1–2, p. 40.Google Scholar
  24. [24]
    H.F. Abbas and W.M.A.W. Daud, Hydrogen production by methane decomposition: A review, Int. J. Hydrogen Energy, 35(2010), No. 3, p. 1160.Google Scholar
  25. [25]
    C.M. Finnerty, N.J. Coe, R.H. Cunningham, and R.M. Ormerod, Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane, Catal. Today, 46(1998), No. 2–3, p. 137.Google Scholar
  26. [26]
    M. Inoue, K. Asai, Y. Nagayasu, K. Takane, S. Iwamoto, E. Yagasaki, and K. Ishii, Formation of multi-walled carbon nanotubes by Ni-catalyzed decomposition of methane at 600–750°C, Diamond Relat. Mater., 17(2008), No. 7–10, p. 1471.Google Scholar
  27. [27]
    A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61(2000), No. 20, p. 14095.Google Scholar
  28. [28]
    A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, 43(2005), No. 8, p. 1731.Google Scholar
  29. [29]
    T. Jawhari, A. Roid, and J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, 33(1995), No. 11, p. 1561.Google Scholar
  30. [30]
    G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, and O. Paris, A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy, Carbon, 44(2006), No. 15, p. 3239.Google Scholar
  31. [31]
    J.D. Herdman, B.C. Connelly, M.D. Smooke, M.B. Long, and J.H. Miller, A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames, Carbon, 49(2011), No. 15, p. 5298.Google Scholar
  32. [32]
    F. Tuinstra and J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53(1970), No. 3, p. 1126.Google Scholar
  33. [33]
    S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition, J. Appl. Phys., 97(2005), No. 10, p. 104320.Google Scholar
  34. [34]
    D.S. Knight and W.B. White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res., 4(1989), No. 2, p. 385.Google Scholar
  35. [35]
    A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, and J.M.D. Tascón, Raman microprobe studies on carbon materials, Carbon, 32(1994), No. 8, p. 1523.Google Scholar
  36. [36]
    C.D. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel, 86(2007), No. 15, p. 2316.Google Scholar
  37. [37]
    Y. Wang, D.C. Alsmeyer, and R.L. McCreery, Raman spectroscopy of carbon materials: structural basis of observed spectra, Chem. Mater., 2(1990), No. 5, p. 557.Google Scholar
  38. [38]
    R.C. Maher, V. Duboviks, G.J. Offer, M. Kishimoto, N.P. Brandon, and L.F. Cohen, Raman spectroscopy of solid oxide fuel cells: Technique overview and application to carbon deposition analysis, Fuel Cells, 13(2013), No. 4, p. 455.Google Scholar
  39. [39]
    J. Kuhn and O. Kesler, Method for in situ carbon deposition measurement for solid oxide fuel cells, J. Power Sources, 246(2014), p. 430.Google Scholar
  40. [40]
    C. Su, Y.Z. Wu, W. Wang, Y. Zheng, R. Ran, and Z.P. Shao, Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel, J. Power Sources, 195(2010), No. 5, p. 1333.Google Scholar
  41. [41]
    T. Skalar, E. Jelen, B. Novosel, and M. Marinšek, Oxidation of carbon deposits on anode material Ni-YSZ in solid oxide fuel cells, J. Therm. Anal. Calorim., 127(2017), No. 1, p. 265.Google Scholar
  42. [42]
    Y. Kim, J.H. Kim, J. Bae, C.W. Yoon, and S.W. Nam, In situ analyses of carbon dissolution into Ni-YSZ anode materials, J. Phys. Chem. C, 116(2012), No. 24, p. 13281.Google Scholar
  43. [43]
    N. Muradov, F. Smith, and A. T-Raissi, Catalytic activity of carbons for methane decomposition reaction, Catal. Today, 102–103(2005), p. 225.Google Scholar
  44. [44]
    J.J. Cuomo, J.P. Doyle, J. Bruley, and J.C. Liu, Sputter deposition of dense diamond-like carbon films at low temperature, Appl. Phys. Lett., 58(1991), No. 5, p. 466.Google Scholar
  45. [45]
    T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto, and Y. Ikuhara, Atomic and electronic structures of Ni/YSZ (111) interface, Mater. Trans., 45(2004), No. 7, p. 2137.Google Scholar
  46. [46]
    Y.F. Dong, S.J. Wang, J.W. Chai, Y.P. Feng, and C.H.A. Huan, Impact of interface structure on Schottky-barrier height for Ni/ZrO2 (001) interfaces, Appl. Phys. Lett., 86(2005), No. 13, p. 132103.Google Scholar
  47. [47]
    S. Kasamatsu, T. Tada, and S. Watanabe, First principles study of oxygen vacancies near nickel/zirconia interface, J. Surf. Sci. Nanotechnol., 8(2010), p. 93.Google Scholar
  48. [48]
    A. Feinberg and C.H. Perry, Structural disorder and phase transitions in ZrO2-Y2O3 system, J. Phys. Chem. Solids, 42(1981), No. 6, p. 513.Google Scholar
  49. [49]
    C. Li and M.J. Li, UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3-ZrO2 and SO4 2-/ZrO2, J. Raman Spectrosc., 33(2002), No. 5, p. 301.Google Scholar
  50. [50]
    S. Karlin and P. Colomban, Phase diagram, short-range structure, and amorphous phases in the ZrO2-GeO2(-H2O) system, J. Am. Ceram. Soc., 82(1999), No. 3, p. 735.Google Scholar
  51. [51]
    D.W. Liu, C.H. Perry, and R.P. Ingel, Infrared spectra in nonstoichiometric yttria-stabilized zirconia mixed crystals at elevated temperatures, J. Appl. Phys., 64(1988), No. 3, p. 1413.Google Scholar
  52. [52]
    D.J. Kim, H.J. Jung, and I.S. Yang, Raman spectroscopy of tetragonal zirconia solid solutions, J. Am. Ceram. Soc., 76(1993), No. 8, p. 2106.Google Scholar
  53. [53]
    J. Carrasco, L. Barrio, P. Liu, J.A. Rodriguez, and M.V. Ganduglia-Pirovano, Theoretical studies of the adsorption of CO and C on Ni(111) and Ni/CeO2(111): Evidence of a strong metal-support interaction, J. Phys. Chem. C, 117(2013), No. 16, p. 8241.Google Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhi-yuan Chen
    • 1
    • 2
  • Li-jun Wang
    • 3
    Email author
  • Xiao-jia Du
    • 4
  • Zai-hong Sun
    • 4
  • Fu-shen Li
    • 5
  • Kuo-Chih Chou
    • 1
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of Materials Science and EngineeringDelft University of Technology, Mekelweg 2CD DelftThe Netherlands
  3. 3.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina
  4. 4.Suzhou Huatsing Jingkun New Energy Technology Co., Ltd.SuzhouChina
  5. 5.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations