Advertisement

A novel approach to predict green density by high-velocity compaction based on the materials informatics method

  • Kai-qi Zhang
  • Hai-qing YinEmail author
  • Xue Jiang
  • Xiu-qin Liu
  • Fei He
  • Zheng-hua Deng
  • Dil Faraz Khan
  • Qing-jun Zheng
  • Xuan-hui Qu
Article

Abstract

High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results.

Keywords

powder metallurgy high-velocity compaction green density data mining multilayer perceptron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0700503), the National High Technology Research and Development Program of China (No. 2015AA034201), the Beijing Science and Technology Plan (No. D161100002416001), the National Natural Science Foundation of China (No. 51172018), and Kennametal Inc.

References

  1. [1]
    D. Jauffrès, O. Lame, G. Vigier, and F. Doré, Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction, Polymer, 48(2007), No. 21, p. 6374.CrossRefGoogle Scholar
  2. [2]
    P. Skoglund, High density PM parts by high velocity compaction, Powder Metall., 44(2001), No. 3, p. 199.Google Scholar
  3. [3]
    J.Z, Wang, H.Q Yin, and X.H. Qu, Analysis of density and mechanical properties of high velocity compacted iron powder, Acta Metall. Sin. Engl. Lett., 22(2009), No. 6, p. 447.CrossRefGoogle Scholar
  4. [4]
    G. Sethi, E. Hauck, and R.M. German, High velocity compaction compared with conventional compaction, Mater. Sci. Technol., 22(2006), No. 8, p. 955.CrossRefGoogle Scholar
  5. [5]
    Z.Q. Yan, F. Chen, Y.X. Cai, J. Yin, and Y.K. Zheng, Preparation and properties of Ti-4.5Al-6.8Mo-1.5Fe alloy by high-velocity compaction, Powder Technol., 246(2013), p. 345.CrossRefGoogle Scholar
  6. [6]
    P.Y. Huang, The Principle of Powder Metallurgy, Metallurgical Industry Press, Beijing, 1997.Google Scholar
  7. [7]
    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL Mater., 1(2013), No. 1, art. No. 011002.Google Scholar
  8. [8]
    J.P. Holdren, Materials Genome Initiative for Global Competitiveness, National Science and Technology Council OSTP Washington, Washington, 2011.Google Scholar
  9. [9]
    G.J. Schmitz and U. Prahl, Integrative Computational Materials Engineering: Concepts Applications of a Modular Simulation Platform, John Wiley & Sons, New Jersey, 2012.CrossRefGoogle Scholar
  10. [10]
    K. Rajan, Materials informatics: The materials “gene” and big data, Annu. Rev. Mater. Res., 45(2015), p. 153.CrossRefGoogle Scholar
  11. [11]
    X.Y. Yang, Z.G. Wang, X.S. Zhao, J.L. Song, M.M. Zhang, and H.D. Liu, MatCloud: A high-throughput computational infrastructure for integrated management of materials simulation, data and resources, Comput. Mater. Sci., 146(2018), p. 319.CrossRefGoogle Scholar
  12. [12]
    L.R. Zhao, K. Chen, Q. Yang, J.R. Rodgers, and S.H. Chiou, Materials informatics for the design of novel coatings, Surf. Coat. Technol., 200(2005), No. 5–6, p. 1595.CrossRefGoogle Scholar
  13. [13]
    J.K. Nørskov and T. Bligaard, The catalyst genome, Angew. Chem. Int. Ed., 52(2013), No. 3, p. 776.CrossRefGoogle Scholar
  14. [14]
    K. Takahashi and Y. Tanaka, Materials informatics: a journey towards material design and synthesis, Dalton Trans., 45(2016), No. 26, p. 10497.CrossRefGoogle Scholar
  15. [15]
    H. Ohno, Empirical studies of Gaussian process based Bayesian optimization using evolutionary computation for materials informatics, Expert Syst. Appl., 96(2018), p. 25.CrossRefGoogle Scholar
  16. [16]
    D.Z. Xue, D.Q. Xue, R.H. Yuan, Y.M. Zhou, P.V. Balachandran, X.D. Ding, J. Sun, and T. Lookman, An informatics approach to transformation temperatures of NiTi-based shape memory alloys, Acta Mater., 125(2017), p. 532.CrossRefGoogle Scholar
  17. [17]
    D.Z. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D.Q. Xue, and T. Lookman, Accelerated search for materials with targeted properties by adaptive design, Nat. Commun., 7(2016), Art. No. 11241.Google Scholar
  18. [18]
    P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, and A.J. Norquist, Machine-learning-assisted materials discovery using failed experiments, Nature, 533(2016), p. 73.CrossRefGoogle Scholar
  19. [19]
    B. Hu, K.L. Lu, Q. Zhang, X.B. Ji, and W.C. Lu, Data mining assisted materials design of layered double hydroxide with desired specific surface area, Comput. Mater. Sci., 136(2017), p. 29.CrossRefGoogle Scholar
  20. [20]
    A. Smola and S.V.N. Vishwanathan, Introduction to Machine Learning, Cambridge University Press, Cambridge, 2004.Google Scholar
  21. [21]
    T. Marwala, Finite-element-model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics, Springer-Verlag, London, 2010.CrossRefGoogle Scholar
  22. [22]
    J.J. Möller, W. Körner, G. Krugel, D.F. Urban, and C. Elsässer, Compositional optimization of hard-magnetic phases with machine-learning models, Acta Mater., 153(2018), p. 53.CrossRefGoogle Scholar
  23. [23]
    J. Cai, J.W. Luo, S.L. Wang, and S. Yang, Feature selection in machine learning: A new perspective, Neurocomputing, 300(2018), p. 70.CrossRefGoogle Scholar
  24. [24]
    H.F. Fischmeister, E. Arzt, and L.R. Olsson, Particle deformation and sliding during compaction of spherical powders: A study by quantitative metallography, Powder Metall., 21(1978), No. 4, p. 179.CrossRefGoogle Scholar
  25. [25]
    D. Bortzmeyer, G. Langguth, and G. Orange, Fracture mechanics of green products, J. Eur. Ceram. Soc., 11(1993), No. 1, p. 9.CrossRefGoogle Scholar
  26. [26]
    Z.Y. Liu, T.B. Sercombe, and G.B. Schaffer, The effect of particle shape on the sintering of aluminum, Metall. Mater. Trans. A, 38(2007), No. 6, p. 1351.CrossRefGoogle Scholar
  27. [27]
    A.D. Rosato, T. Vreeland, and F.B. Prinz, Manufacture of powder compacts, Int. Mater. Rev., 36(1991), No. 2, p. 45.CrossRefGoogle Scholar
  28. [28]
    D.W. Yang and L. Miao, Probability Theory and Mathematical Statistics, Science Press, Beijing, 2014.Google Scholar
  29. [29]
    R.M. German, Powder Metallurgy and Particulate Materials Processing, Metal Powder Industry, New Jersey, 2005.Google Scholar
  30. [30]
    S. Maldonado, J. López, and M. Carrasco, A second-order cone programming formulation for twin support vector machines, Appl. Intell., 45(2016), No. 2, p. 265.CrossRefGoogle Scholar
  31. [31]
    J. Luts, F. Ojeda, R.V. de Van, B. De Moor, S. Van Huffel, and J.A.K. Suykens, A tutorial on support vector machine-based methods for classification problems in chemometrics, Anal. Chim. Acta, 665(2010), No. 2, p. 129.CrossRefGoogle Scholar
  32. [32]
    B. Richhariya and M. Tanveer, EEG signal classification using universum support vector machine, Expert Syst. Appl., 106(2018), p. 169.CrossRefGoogle Scholar
  33. [33]
    M.W. Gardner and S.R. Dorling, Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences, Atmos. Environ., 32(1998) No. 14–15, p. 2627.CrossRefGoogle Scholar
  34. [34]
    T. Varol, A. Canakci, and S. Ozsahin, Modeling of the prediction of densification behavior of powder metallurgy Al-Cu-Mg/B4C composites using artificial neural networks, Acta Metall. Sin. Engl. Lett., 28(2015), No. 2, p. 182.CrossRefGoogle Scholar
  35. [35]
    B. Shunag, Growing random forest on deep convolutional neural networks for scene categorization, Expert Syst. Appl., 71(2017), p. 279.CrossRefGoogle Scholar
  36. [36]
    X. Jiang, H.Q. Yin, C. Zhang, R.J. Zhang, K.Q. Zhang, Z.H. Deng, G.Q. Liu, and X.H. Qu, A materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction, Comput. Mater. Sci., 143(2018), p. 295.CrossRefGoogle Scholar
  37. [37]
    T. Chai and R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7(2014), p. 1247.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kai-qi Zhang
    • 1
  • Hai-qing Yin
    • 1
    • 6
    • 7
    Email author
  • Xue Jiang
    • 1
  • Xiu-qin Liu
    • 4
  • Fei He
    • 1
  • Zheng-hua Deng
    • 1
    • 2
  • Dil Faraz Khan
    • 5
  • Qing-jun Zheng
    • 3
  • Xuan-hui Qu
    • 1
  1. 1.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Chongqing Engineering Technology Research Center for Light Alloy and ProcessingChongqingChina
  3. 3.Kennametal IncWayUSA
  4. 4.School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina
  5. 5.Department of PhysicsUniversity of Science and Technology BannuBannuPakistan
  6. 6.Beijing Key Laboratory of Materials Genome EngineeringBeijingChina
  7. 7.Beijing Laboratory of Metallic Materials and Processing for Modern TransportationBeijingChina

Personalised recommendations