Advertisement

Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO−C composite anode

  • Azhar Iqbal
  • Long Chen
  • Yong Chen
  • Yu-xian Gao
  • Fang Chen
  • Dao-cong Li
Article
  • 8 Downloads

Abstract

A high-energy-density Li-ion battery with excellent rate capability and long cycle life was fabricated with a Ni-rich layered Li- Ni0.8Mn0.1Co0.1O2 cathode and SiO−C composite anode. The Ni0.8Mn0.1Co0.1O2 and SiO−C exhibited excellent electrochemical performance in both half and full cells. Specifically, when integrated into a full cell configuration, a high energy density (280 Wh·kg−1) with excellent rate capability and long cycle life was attained. At 0.5C, the full cell retained 80% of its initial capacity after 200 charge/discharge cycles, and 60% after 600 cycles, indicating robust structural tolerance for the repeated insertion/extraction of Li+ ions. The rate performance showed that, at high rate of 1C and 2C, 96.8% and 93% of the initial capacity were retained, respectively. The results demonstrate strong potential for the development of high energy density Li-ion batteries for practical applications.

Keywords

high energy density full cell rate performance high capacity cathode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by National R&D Program of China (No. 2016YFB0100301).

References

  1. [1]
    Y. Ding, D.B. Mu, B.R. Wu, R. Wang, Z.K. Zhao, and F. Wu, Recent progresses on nickel–rich layered oxide positive electrode materials used in lithium–ion batteries for electric vehicles, Appl. Energy, 195(2017), p. 586.CrossRefGoogle Scholar
  2. [2]
    K. Wang, Y.M. Wei, and X. Zhang, Energy and emissions efficiency patterns of Chinese regions: A multi–directional efficiency analysis, Appl. Energy, 104(2013), p. 105.CrossRefGoogle Scholar
  3. [3]
    Y.Z. Zhang, R. Xiong, H.W. He, and W.X. Shen, A lithium–ion battery pack state of charge and state of energy estimation algorithms using a hardware–in–the–loop validation, IEEE Trans. Power Electron., 32(2017), No. 6, p. 4421.CrossRefGoogle Scholar
  4. [4]
    Z. Yang, J. Zhang, M.C.W. Kintner–Meyer, X. Lu, D. Choi, J.P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev. 111(2011), No. 5, p. 3577.Google Scholar
  5. [5]
    F.C. Sun, R. Xiong, and H.W. He, A systematic state–of–charge estimation framework for multi–cell battery pack in electric vehicles using bias correction technique, Appl. Energy, 162(2016), p. 1399.CrossRefGoogle Scholar
  6. [6]
    J.H Lee, C.S. Yoon, J.Y Hwang, S.J Kim, F. Maglia, P. Lamp, S.T. Myung, and Y.K. Sun, High–energy–density lithium–ion battery using carbon–nanotube–si composite anode and compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode, Energy Environ. Sci., 9(2016), No. 6, p. 2152.CrossRefGoogle Scholar
  7. [7]
    Z.H. Sun, D.D. Wang, Y.Y. Fan, L.S. Jiao, F.H. Li, T.S. Wu, D.X. Han, and L. Niu, Improved performances of Li–Ni0.6Co0.15Mn0.25O2 cathode material with full concentration–gradient for lithium ion batteries, RSC Adv., 6(2016), No. 105, p. 103747.CrossRefGoogle Scholar
  8. [8]
    J.C. Zheng, B.Y. Yang, X.W. Wang, B. Zhang, H. Tong, W.J. Yu, and J.F. Zhang, Comparative investigation of Na2FeP2O7 sodium insertion material synthesized by using different sodium sources, ACS Sustainable Chem. Eng. 6(2018), No. 4, p. 4966.Google Scholar
  9. [9]
    C.X. Zhou, P.B. Wang, J.C. Zheng, C.Y. Xia, B. Zhang, X.M. Xi, K.S. Xiao, D.Q. Liao, L.S. Yang, X.Q. Chen, and S.B. Qin, Cyclic performance of Li–rich layered material Li1.1Ni0.35Mn0.65O2 synthesized through a two–step calcination method, Electrochem. Acta, 252(2017), p. 286.CrossRefGoogle Scholar
  10. [10]
    P.B. Wang, M.Z. Luo, J.C. Zheng, Z.J. He, H. Tong, and W.J. Yu, Comparative investigation of 0.5Li2MnO3.0.5LiNi0.5Co0.2Mn0.3O2 cathode materials synthesized by using different lithium sources, Front. Chem. 6(2018), p. 1.Google Scholar
  11. [11]
    M. Marinaro, D.H. Yoon, G. Gabrielli, P. Stegmaier, E. Figgemeier, P.C. Spurk, D. Nelis, G. Schmidt, J. Chauveau, P. Axmann, and M.W. Mehrens, High performance 1.2 Ah Si–alloy/GraphiteLiNi0.5Mn0.3Co0.2O2 prototype Li–ion battery, J. Power Sources, 357(2017), p. 188.CrossRefGoogle Scholar
  12. [12]
    S.T. Myung, F. Maglia, K.J. Park, C.S. Yoon, P. Lamp, S.J. Kim, and Y.K. Sun, Nickel–rich layered cathode materials for automotive lithium–ion batteries, ACS Energy Lett., 2(2016), No. 1, p. 196.CrossRefGoogle Scholar
  13. [13]
    F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E.M. Erickson, C. Ghanty, D.T. Major, B. Markovsky, and D. Aurbach, Stabilizing nickel–rich layered cathode materials by a high–charge cation doping strategy: Zirconium–doped LiNi0.6Co0.2Mn0.2O2, J. Mater. Chem. A, 4(2016), No. 41, p. 16073.CrossRefGoogle Scholar
  14. [14]
    S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, and C. Capiglia, Review on recent progress of nanostructured anode materials for Li–ion batteries, J. Power Sources, 257(2014), p. 421.CrossRefGoogle Scholar
  15. [15]
    N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, and Y. Cui, A yolk–shell design for stabilized and scalable Li–ion battery alloy anodes, Nano Lett., 12(2012), No. 6, p. 3315.CrossRefGoogle Scholar
  16. [16]
    J.H. Kim, H.J. Sohn, H. Kim, G. Jeong, and W. Choi, Enhanced cycle performance of SiO−C composite anode for lithium–ion batteries, J. Power Sources, 170(2007), No. 2, p. 456.CrossRefGoogle Scholar
  17. [17]
    J.Y. Zhang, C.Q. Zhang, Z. Liu, J. Zheng, Y.H. Zuo, C.L. Xue, C.B. Li, and B.W. Cheng, High–performance ball–milled SiOx anodes for lithium ion batteries, J. Power Sources, 339(2017), p. 86.CrossRefGoogle Scholar
  18. [18]
    H.R. Kim, S.G. Woo, J.H. Kim, W. Cho, and Y.J. Kim, Capacity fading behavior of Ni–rich layered cathode materials in Li–ion full cells, J. Electroanal. Chem., 782(2016), p. 168.CrossRefGoogle Scholar
  19. [19]
    T. Ohzuku, A. Ueda, and M. Nagayama, Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium batteries, J. Electrochem. Soc., 140(1993), No. 7, p. 1862.CrossRefGoogle Scholar
  20. [20]
    W. Li, J.N. Reimers, and J.R. Dahn, In situ x–ray diffraction and electrochemical studies of Li1−xNiO2, Solid State Ionics, 67(1993), No. 1–2, p. 123.CrossRefGoogle Scholar
  21. [21]
    H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki, Characterization and cathode performance of Li1−xNi1+xO2 prepared with the excess lithium method, Solid State Ionics, 80(1995), No. 3–4, p. 261.CrossRefGoogle Scholar
  22. [22]
    J. Yang and Y.Y. Xia, Enhancement on cycling stability of the layered Ni–rich oxide cathode by in–situ fabricating nano–thickness cation–mixing layers, J. Electrochem. Soc., 163(2016), No. 13, p. A2665.Google Scholar
  23. [23]
    J. Yang and Y.Y. Xia, Suppressing the phase transition of the layered Ni–rich oxide cathode during high–voltage cycling by introducing low–content Li2MnO3, ACS Appl. Mater. Interfaces, 8(2016), No. 2, p. 1297.CrossRefGoogle Scholar
  24. [24]
    J. Yang, M.Y. Hou, S. Haller, Y.G. Wang, C.X. Wang, and Y.Y. Xia, Improving the cycling performance of the layered Ni–rich oxide cathode by introducing low–content Li2MnO3, Electrochim. Acta, 189(2016), p. 101.CrossRefGoogle Scholar
  25. [25]
    J. Park, G.P. Kim, I. Nam, S. Park, and J. Yi, One–pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium–ion batteries, Nanotechnology, 24(2013), No. 2, p. 025602.CrossRefGoogle Scholar
  26. [26]
    Y.S. Hu, R. Demir–Cakan, M.M. Titirici, J.O.Müller, R. Schlögl, M. Antonietti, and J. Maier, Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium–ion batteries, Angew. Chem. Int. Ed., 47(2008), No. 9, p. 1645.CrossRefGoogle Scholar
  27. [27]
    H.F. Yang, Y. Yan, Y. Liu, F.Q. Zhang, R.Y. Zhang, Y. Meng, M. Li, S.H. Xie, B. Tu, and D.Y. Zhao, A simple melt impregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches, J. Phys. Chem. B, 108(2004), No. 45, p. 17320.CrossRefGoogle Scholar
  28. [28]
    C.M. Park, W. Choi, Y. Hwa, J.H. Kim, G. Jeong, and H.J. Sohn, Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li–ion batteries, J. Mater. Chem. 20(2010), No. 23, p. 4854.Google Scholar
  29. [29]
    M. Mamiya, H. Takei, M. Kikuchi, and C. Uyeda, Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction, J. Cryst. Growth, 229(2001), No. 1–4, p. 457.CrossRefGoogle Scholar
  30. [30]
    I. Choi, M.J. Lee, S.M. Oh, and J.J. Kim, Fading mechanisms of carbon–coated and disproportionate Si/SiOx negative electrode (Si/SiOx/C) in Li–ion secondary batteries: Dynamics and component analysis by TEM, Electrochem. Acta, 85(2012), p. 369.CrossRefGoogle Scholar
  31. [31]
    J.P. Maranchi, A.F. Hepp, A.G. Evans, N.T. Nuhfer, and P.N. Kumta, Interfacial properties of the a Si/Cu: active–inactive thin–film anode system for lithiumion batteries, J. Electrochem. Soc., 153(2006), No. 6, p. A1246.Google Scholar
  32. [32]
    A. Konarov, S.T. Myung, and Y.K. Sun, Cathode materials for future electric vehicles and energy storage systems, ACS Energy Lett., 2(2017), No. 3, p. 703.CrossRefGoogle Scholar
  33. [33]
    K. Eom, T. Joshi, A. Bordes, I. Do, and T.F. Fuller, The design of a Li–ion full cell battery using a nano silicaon and nano multi–layer graphene composite anode, J. Power Sources, 249(2014), p. 118.CrossRefGoogle Scholar
  34. [34]
    S.E. Trask, K.Z. Pupek, J.A. Gilbert, M. Klett, B.J. Polzin, A.N. Jansen, and D.P. Abraham, Performance of full cells containing carbonate–based LiFSI electrolytes and silicon–graphite negative electrodes, J. Electrochem. Soc. 163(2016), No. 3, p. A345.Google Scholar
  35. [35]
    P.F. Zhou, H.J. Meng, Z. Zhang, C.C. Chen, Y.Y. Lu, J. Cao, F.Y. Cheng, and J. Chen, Stable layered Ni–rich Li–Ni0.9Co0.07Al0.03O2 microspheres assembled with nanoparticles as high–performance cathode materials for lithium–ion batteries, J. Mater. Chem. A, 5(2017), No. 6, p. 2724.CrossRefGoogle Scholar
  36. [36]
    L.S. Jiao, Z.B. Liu, Z.H. Sun, T.S. Wu, Y.Z. Gao, H.Y. Li, F.H. Li, and L. Niu, An advanced lithium ion battery based on a high quality graphitic graphene anode and a Li[Ni0.6Co0.2Mn0.2]O2 cathode, Electrochem. Acta, 259(2018), p. 48.CrossRefGoogle Scholar
  37. [37]
    J.M. Zheng, P.F. Yan, R.G. Cao, H.F. Xiang, M.H. Engelhard, B.J. Polzin, C.M. Wang, J.G. Zhang, and W. Xu, Effects of propylene carbonate content in CsPF6–containing electrolytes on the enhanced performances of graphite electrode for lithium–ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 8, p. 5715.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Azhar Iqbal
    • 1
  • Long Chen
    • 1
  • Yong Chen
    • 1
  • Yu-xian Gao
    • 1
  • Fang Chen
    • 1
  • Dao-cong Li
    • 1
  1. 1.Institute of Engineering ResearchHefei Guoxuan High-Tech Power Energy CO., LtdHefeiChina

Personalised recommendations