In-situ fabrication of Al(Zn)−Al2O3 graded composite using the aluminothermic reaction during hot pressing

  • S. M. A. Haghi
  • S. A. Sajjadi
  • A. Babakhani


In this study, the fabrication of multilayer Al(Zn)–Al2O3 with different volume fractions of Al2O3 was investigated. Al and ZnO powders were milled by a planetary ball mill, after which five-layer functionally graded samples were produced through hot pressing at 580°C and 90 MPa pressure for 30 min. Formation of reinforcing Al2O3 particles occurred in the aluminum matrix via the aluminothermic reaction. Determination of the ignition temperature of the aluminothermic reaction was accomplished using differential thermal and thermogravimetric analyses. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffractometery analyses were utilized to characterize the specimens. The thermal analysis results showed that the ignition temperatures for the aluminothermic reaction of layers with the highest and lowest ZnO contents were 667 and 670°C, respectively. Microstructural observation and chemical analysis confirmed the fabrication of Al(Zn)–Al2O3 functionally graded materials composites with precipitation of additional Zn in the matrix. Moreover, nearly dense functionally graded samples demonstrated minimum and maximum hardness values of HV 75 and HV 130, respectively.


metal-matrix composites functionally graded composites thermogravimetric analysis powder processing sintering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Lian, X. Liu, Z. Xu, J. Song, and Y. Yu, Preparation and properties of CVD-W coated W/Cu FGM mock-ups, Fusion Eng. Des., 88(2013), No. 9–10, p. 1694.CrossRefGoogle Scholar
  2. [2]
    Y.G. Jung, S.W. Park, and S.C. Choi, Effect of CH4 and H2 on CVD of SiC and TiC for possible fabrication of SiC/TiC/C FGM, Mater. Lett., 30(1997), No. 5–6, p. 339.CrossRefGoogle Scholar
  3. [3]
    B. Kieback, A. Neubrand, and H. Riedel, Processing techniques for functionally graded materials, Mater. Sci. Eng, A, 362(2003), No. 1–2, p. 81.CrossRefGoogle Scholar
  4. [4]
    B. Dikici and M. Gavgali, The effect of sintering time on synthesis of in situ submicron α-Al2O3 particles by the exothermic reactions of CuO particles in molten pure Al, J. Alloys Compd., 551(2013), p. 101.CrossRefGoogle Scholar
  5. [5]
    C. Feng and L. Froyen, In-situ P/M Al/(ZrB2 + Al2O3) MMCs: processing, microstructure and mechanical characterization, Acta Mater., 47(1999), 18, p. 4571.CrossRefGoogle Scholar
  6. [6]
    S. Razavi-Tousi, R. Yazdani-Rad, and S.A. Manafi, Effect of volume fraction and particle size of alumina reinforcement on compaction and densification behavior of Al–Al2O3 nanocomposites, Mater. Sci. Eng, A, 528(2011), 3, p. 1105.CrossRefGoogle Scholar
  7. [7]
    M. Tavoosi, F. Karimzadeh, M. Enayati, and A. Heidarpour, Bulk Al–Zn/Al2O3 nanocomposite prepared by reactive milling and hot pressing methods, J. Alloys Compd., 475(2009), No. 1–2, p. 198.CrossRefGoogle Scholar
  8. [8]
    T.G. Durai, K. Das, and S. Das, Al(Zn)–4Cu/Al2O3 in-situ metal matrix composite synthesized by displacement reactions, J. Alloys Compd., 457(2008), No. 1–2, p. 435.CrossRefGoogle Scholar
  9. [9]
    G.H. Zahid, T. Azhar, M. Musaddiq, S.S. Rizvi, M. Ashraf, N. Hussain, and M. Iqbal, In-situ processing and aging behaviour of an aluminium/Al2O3 composite, Mater. Des., 32(2011), 3, p. 1630.CrossRefGoogle Scholar
  10. [10]
    P. Yu, C.J. Deng, N.G. Ma, M.Y. Yau, and D.H.L. Ng, Formation of nanostructured eutectic network in α-Al2O3 reinforced Al–Cu alloy matrix composite, Acta Mater., 51(2003), 12, p. 3445.CrossRefGoogle Scholar
  11. [11]
    B. Yang, M. Sun, G.S. Gan, C.G. Xu, Z.J. Huang, H.B. Zhang, and Z.Z. Fang, In-situ Al2O3 particle-reinforced Al and Cu matrix composites synthesized by displacement reactions, J. Alloys Compd., 494(2010), No. 1–2, p. 261.CrossRefGoogle Scholar
  12. [12]
    J.M. Wu and Z.Z. Li, Nanostructured composite obtained by mechanically driven reduction reaction of CuO and Al powder mixture, J. Alloys Compd., 299(2000), No. 1–2, p. 9.CrossRefGoogle Scholar
  13. [13]
    Z.J. Huang, B. Yang, H. Cui, and J.S. Zhang, Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements, Mater. Sci. Eng, A, 351(2003), No. 1–2, p. 15.CrossRefGoogle Scholar
  14. [14]
    J.B. Fogagnolo, E.M.J.A. Pallone, D.R. Martin, C.S. Kiminami, C. Bolfarini, and W.J. Botta, Processing of Al matrix composites reinforced with Al–Ni compounds and Al2O3 by reactive milling and reactive sintering, J. Alloys Compd., 471(2009), No. 1–2, p. 448.CrossRefGoogle Scholar
  15. [15]
    Z.C. Chen, T. Takeda, and K. Ikeda, Microstructural evolution of reactive-sintered aluminum matrix composites, Compos. Sci. Technol., 68(2008), No. 10–11, p. 2245.CrossRefGoogle Scholar
  16. [16]
    J.J.S. Dilip, B.S.B. Reddy, S. Das, and K. Das, In-situ Al-based bulk nanocomposites by solid–state aluminothermic reaction in Al–Ti–O system, J. Alloys Compd., 475(2009), No. 1–2, p. 178.CrossRefGoogle Scholar
  17. [17]
    H.G. Zhu, J. Min, J.L. Li, Y.L. Ai, L.Q. Ge, and H.Z. Wang, In situ fabrication of (α-Al2O3+Al3Zr)/Al composites in an Al–ZrO2 system, Compos. Sci. Technol., 70(2010), 15, p. 2183.CrossRefGoogle Scholar
  18. [18]
    K.D. Woo and H.B. Lee, Fabrication of Al alloy matrix composite reinforced with subsive-sized Al2O3 particles by the in situ displacement reaction using high-energy ball-milled powder, Mater. Sci. Eng, A, 449-451(2007), p. 829.CrossRefGoogle Scholar
  19. [19]
    T. Nagae, M. Mizubayashi, M. Yokota, M. Nose, T. Ishiguro, and S. Saji, Pulse current pressure sintering of Al/Al2O3 functionally graded material, [in]Proceedings of the International Symposium on Novel Materials Processing by Advanced Electromagnetic Energy Sources, Osaka, 2005, p. 301.CrossRefGoogle Scholar
  20. [20]
    H.P. Thirtha Prasad, and N. Chikkanna, Experimental investigation on the effect of particle loading on microstructural, mechanical and fractural properties of Al/Al2O3 functionally graded materials, Int. J. Adv. Eng. Technol., 2(2011), 4, p. 161.Google Scholar
  21. [21]
    H. Tao, C.J. Deng, L.M. Zhang, and R.Z. Yuan, Fabrication of Al/Al2O3 composites and FGM, J. Mater. Sci. and Technol., 17(2001), 6, p. 646.Google Scholar
  22. [22]
    A. Maleki, M. Panjepour, B. Niroumand, and M. Meratian, Mechanism of zinc oxide–aluminum aluminothermic reaction, J. Mater. Sci., 45(2010), 20, p. 5574.CrossRefGoogle Scholar
  23. [23]
    ASM International, ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, 1992.Google Scholar
  24. [24]
    S. Hasani, M. Panjepour, and M. Shamanian, Oxidation and kinetic analysis of pure aluminum powder under nonisothermal condition, Open Access Scientific Reports, 1(2012), 8, p. 1.Google Scholar
  25. [25]
    T.G. Durai, K. Das, and S. Das, Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates, Mater. Sci. Eng, A, 445-446(2006), p. 100.CrossRefGoogle Scholar
  26. [26]
    R.M. German, Powder Metallurgy Science, Metal Powder Industries, Princeton, 1984, p. 279.Google Scholar
  27. [27]
    H.G. Zhu, J. Min, J.L. Li, Y.L. Ai, L.Q. Ge, and H.Z. Wang, In situ fabrication of (α-Al2O3 + Al3Zr)/Al composites in an Al–ZrO2 system, Compos. Sci. Technol., 70(2010), 15, p. 2183.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. M. A. Haghi
    • 1
  • S. A. Sajjadi
    • 1
  • A. Babakhani
    • 1
  1. 1.Department of Materials Science and Engineering, Engineering facultyFerdowsi University of MashhadMashhadIran

Personalised recommendations