Advertisement

Microstructure and mechanical properties of Nb–Mo–ZrB2 composites prepared by hot-pressing sintering

  • Yuan Gao
  • Zong-de Liu
  • Qi Wang
  • Yong-tian Wang
Article

Abstract

Nb–Mo–ZrB2 composites (V(Nb)/V(Mo) = 1) with 15vol% or 30vol% of ZrB2 were fabricated by hot-pressing sintering at 2000°C. The phases, microstructure, and mechanical properties were then investigated. The composites contain Nb-Mo solid solution (denoted as (Nb, Mo)ss hereafter), ZrB, MoB, and NbB phases. Compressive strength test results suggest that the strength of Nb–Mo–ZrB2 composites increases with increasing ZrB2 content; Nb–Mo–30vol%ZrB2 had the highest compressive strength (1905.1 MPa). The improvement in the compressive strength of the Nb–Mo–ZrB2 composites is mainly attributed to the secondary phase strengthening of the stiffer ZrB phase, solid- solution strengthening of the (Nb, Mo)ss matrix as well as fine-grain strengthening. The fracture toughness decreases with increasing ZrB2 content. Finally, the fracture modes of the Nb–Mo–ZrB2 composites are also discussed in detail.

Keywords

metal–matrix composites microstructure mechanical properties sintering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 11372110).

References

  1. [1]
    Z.Y. Zhu, Y.F. Cai, Y.J. Gong, G.P. Shen, Y.G. Tu, and G.F. Zhang, Isothermal oxidation behavior and mechanism of a nickel-based superalloy at 1000°C, Int. J. Miner. Metall. Mater., 24(2017), 7, p. 776.CrossRefGoogle Scholar
  2. [2]
    Y. Tan, C.L. Ma, A. Kasama, R. Tanaka, and J.M. Yang, High temperature mechanical behavior of Nb-Mo-ZrC alloys, Mater. Sci. Eng, A, 335(2003), No. 1–2, p. 260.CrossRefGoogle Scholar
  3. [3]
    J.L. Li, W. Wang, and C.G. Zhou, Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb-Si-based alloy, Int. J. Miner. Metall. Mater., 24(2017), 3, p. 289.CrossRefGoogle Scholar
  4. [4]
    K. Guan, L.N. Jia, B. Kong, S.N. Yuan, and H. Zhang, Study of the fracture mechanism of NbSS/Nb5Si3 in situ composite: Based on a mechanical characterization of interfacial strength, Mater. Sci. Eng, A, 663(2016), p. 98.CrossRefGoogle Scholar
  5. [5]
    A. Nocivin, I. Cinca, D. Raducanu, V.D. Cojocaru, and I.A. Popovici, Mechanical properties of a Gum-type Ti–Nb–Zr–Fe–O alloy, Int. J. Miner. Metall. Mater., 24(2017), 8, p. 909.CrossRefGoogle Scholar
  6. [6]
    Y.L. Guo, L.N Jia, B. Kong, H.R. Zhang, and H. Zhang, Simultaneous improvement in fracture toughness and oxidation resistance of Nb-Si based alloys by vanadium addition, Mater. Sci. Eng, A, 701(2017), p. 149.CrossRefGoogle Scholar
  7. [7]
    M. Sharma and V. Sharma, Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite, Int. J. Miner. Metall. Mater., 23(2016), 2, p. 222.CrossRefGoogle Scholar
  8. [8]
    Y.L. Guo, L.N. Jia, B. Kong, S.N. Zhang, J.B. Sha, and H. Zhang, Microstructure transition from lamellar eutectic to anomalous eutectic of Nb–Si based alloy powders by heat treatment and spark plasma sintering, J. Alloys Compd., 696(2017), p. 516.CrossRefGoogle Scholar
  9. [9]
    Z.P. Sun, J.M. Guo, C. Zhang, X.P. Guo, and X.D. Tian, Effect of Ti and Al interaction on microstructures and mechanical properties of the Nb-Ti-Si-Al alloys, Rare Met. Mater. Eng., 45(2016), 7, p. 1678.CrossRefGoogle Scholar
  10. [10]
    Q. Huang, C.L. Ma, X.Q. Zhao, and H.B. Xu, Phase equilibria in Nb–Si–Mo ternary alloys at 1 273K and 2 073K, Chinese J. Aeronaut., 21(2008), 5, p. 448.CrossRefGoogle Scholar
  11. [11]
    N. Nomura, K. Yoshimi, and S. Hanada, Mechanical properties of Mo–Nb–TiC in-situ composites synthesized by hot-pressing, Mater Trans JIM, 41(2000), 12, p. 1599.CrossRefGoogle Scholar
  12. [12]
    B.X. Wei, Y.J. Wang, Y.W. Zhao, D. Wang, G.M. Song, Y.D. Fu, and Y. Zhou, Effect of NbC content on microstructure and mechanical properties of W-NbC composites, Int. J. Refract. Met. Hard Mater., 70(2018), p. 66.CrossRefGoogle Scholar
  13. [13]
    P. Mannan, G. Casillas, and E.V. Pereloma, The effect of Nb solute and NbC precipitates on dynamic and metadynamic recrystallisation in Ni–30Fe–Nb–C model alloys, Mater. Sci. Eng, A, 700(2017), p. 116.CrossRefGoogle Scholar
  14. [14]
    X. Sun, W.B. Han, P. Hu, Z. Wang, and X.H. Zhang, Microstructure and mechanical properties of ZrB2-Nb composite, Int. J. Refract. Met. Hard Mater., 28(2010), 3, p. 472.CrossRefGoogle Scholar
  15. [15]
    S.M. Zhu, W.G. Fahrenholtz, and G.E. Hilmas, Enhanced densification and mechanical properties of ZrB2-SiC processed by a preceramic polymer coating route, Scripta Mater., 59(2008), 1, p. 123.CrossRefGoogle Scholar
  16. [16]
    H.L. Wang, D.L. Chen, C.A. Wang, R. Zhang, and D.N. Fang, Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process, Int. J. Refract. Met. Hard Mater., 27(2009), 6, p. 1024.CrossRefGoogle Scholar
  17. [17]
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagram, American Society for Metals, Ohioan(OH), 1986, p. 253.Google Scholar
  18. [18]
    G.F. William, E.H. Gregory, G.T. Inna, and A.Z. James, Refractory diborides of zirconium and hafnium, J.Am. Ceram. Soc., 90(2007), 5, p. 1347.CrossRefGoogle Scholar
  19. [19]
    A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, and D.T. Ellerby, High-strength zirconium diboride-based ceramics, J. Am. Ceram. Soc., 87(2004), 6, p. 1170.CrossRefGoogle Scholar
  20. [20]
    F. Monteverde, S. Guicciardi, and A. Bellosi, Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Mater Sci. Eng, A, 346(2003), No. 1–2, p. 310.CrossRefGoogle Scholar
  21. [21]
    F. Monteverde and A. Bellosi, Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2, Adv. Eng. Mater., 5(2003), 7, p. 508.CrossRefGoogle Scholar
  22. [22]
    Q.B. Nguyen and M. Gupta, Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates, Compos. Sci.Technol., 68(2008), No. 10–11, p. 2185.CrossRefGoogle Scholar
  23. [23]
    X.J. Zhang, Y.S. Zhong, M.W. Li, Y.Y. Qin, F. Xu, X.D. He, and Y.B. Li, In-situ precipitated network structure and high-temperature compressive behavior of Nb–Ti–C–B composites, J. Alloys Compd., 613(2014), p. 25.CrossRefGoogle Scholar
  24. [24]
    A. Saxena, N. Singh, D. Kumar, and P. Gupta, Effect of ceramic reinforcement on the properties of metal matrix nanocomposites, Materials Today: Proceedings, 4(2017), 4, p. 5561.CrossRefGoogle Scholar
  25. [25]
    M.F. Ashby, F.J. Blunt, and M. Bannister, Flow characteristics of highly constrained metal wires, Acta Metall., 37(1989), 7, p. 1847.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuan Gao
    • 1
  • Zong-de Liu
    • 1
  • Qi Wang
    • 1
  • Yong-tian Wang
    • 1
  1. 1.Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of EducationNorth China Electric Power UniversityBeijingChina

Personalised recommendations