Advertisement

Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite

  • Nathália Vieceli
  • Carlos A. Nogueira
  • Manuel F. C. Pereira
  • Fernando O. Durão
  • Carlos Guimarães
  • Fernanda Margarido
Article

Abstract

The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. Therefore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from lepidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and response-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphization and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.

Keywords

lepidolite lithium mechanical activation acid digestion optimization extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author N. Vieceli acknowledges the doctorate grant ref. 9244/13-1 supplied by CAPES Foundation, Ministry of Education of Brazil. The authors are also very grateful to Felmica Minerais Industriais, S.A. for having kindly provided the lepidolite ore used in the tests.

References

  1. [1]
    T.T Hien-Dinh, V.T. Luong, R. Gieré, and T. Tran, Extraction of lithium from lepidolite via iron sulphide roasting and water leaching, Hydrometallurgy, 153(2015), p. 154.CrossRefGoogle Scholar
  2. [2]
    V.T. Luong, D.G. Kang, J.W. An, J.M. Kim, and T. Tran, Factors affecting the extraction of lithium from lepidolite, Hydrometallurgy, 134-135(2013), p 54.CrossRefGoogle Scholar
  3. [3]
    V.T. Luong, D.J. Kang, J.W. An, D.A. Dao, M.J. Kim, and T. Tran, Iron sulphate roasting for extraction of lithium from lepidolite, Hydrometallurgy, 141(2014), p. 8.CrossRefGoogle Scholar
  4. [4]
    Q. Yan, X. Li, Z. Yin, Z. Wang, U. Guo, W. Peng, and Q. Hu, A novel process for extracting lithium from lepidolite, Hydrometallurgy, 121-124(2012), p. 54.CrossRefGoogle Scholar
  5. [5]
    Q. Yan, X. Li, Z. Wang, X. Wu, H. Guo, Q. Hu, W. Peng, and J. Wang, Extraction of valuable metals from lepidolite, Hydrometallurgy, 117-118(2012), p. 116.CrossRefGoogle Scholar
  6. [6]
    Q. Yan, X. Li, Z. Wang, X. Wu, J. Wang, H. Guo, Q. Hu, and W. Peng, Extraction of lithium from lepidolite by sulfation roasting and water leaching, Int. J. Miner. Process., 110-111(2012), p. 1.CrossRefGoogle Scholar
  7. [7]
    Q. Yan, X. Li, Z. Wang, J. Wang, H. Guo, Q. Hu, W. Peng, and X. Wu, Extraction of lithium from lepidolite using chlorination roasting−water leaching process, Trans. Nonferrous Met. Soc. China, 22(2012), p. 1753.CrossRefGoogle Scholar
  8. [8]
    J. Kondás, and J. Jandová, Lithium extraction from zinnwaldite wastes after gravity dressing of Sn-W ores, Acta Metall. Slovaca, 12(2006), p. 197.Google Scholar
  9. [9]
    J. Jandová, H.N. Vu, T. Belková, P. Dvorák, and J. Kondás, Obtaining Li2CO3 from zinnwaldite wastes, Ceram. Silik., 53(2009), No. 2, p. 108.Google Scholar
  10. [10]
    H. Vu, J. Bernardi, J. Jandová, L. Vaculíková, and V. Goliáš, Lithium and rubidium extraction from zinnwaldite by alkali digestion process: Sintering mechanism and leaching kinetics, Int. J. Miner. Process., 123(2013), p. 9.CrossRefGoogle Scholar
  11. [11]
    J. Jandová, P. Dvorak, H.N. and Vu, Processing of zinnwaldite waste to obtain Li2CO3, Hydrometallurgy, 103(2010), p. 12.CrossRefGoogle Scholar
  12. [12]
    O. Sitando and P.L. Crouse, Processing of a Zimbabwean petalite to obtain lithium carbonate, Int. J. Miner. Process., 102-103(2012), p. 45.CrossRefGoogle Scholar
  13. [13]
    L.I. Barbosa, G. Valente, R.P. Orosco, and J.A. González, Lithium extraction from β-spodumene through chlorination with chlorine gas, Miner. Eng., 56(2014), p. 29.CrossRefGoogle Scholar
  14. [14]
    E. Siame and R.D. Pascoe, Extraction of lithium from micaceous waste from china clay production, Miner. Eng., 24(2011), p. 1595.CrossRefGoogle Scholar
  15. [15]
    N. Vieceli, C.A. Nogueira, M.F.C. Pereira, F.O. Durão, C. Guimarães, and F. Margarido, Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates, Miner. Process. Extr. Metall. Rev., 38(2017), No. 1, p. 62.CrossRefGoogle Scholar
  16. [16]
    N. Vieceli, C.A. Nogueira, M.F.C. Pereira, A.P.S. Dias, F.O. Durão, C. Guimarães, and F. Margarido, Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate, Miner. Eng., 102(2017), p. 1.CrossRefGoogle Scholar
  17. [17]
    TEMA Machinery Ltd., Laboratory Disc Mill [2016-08-01]. http://www.tema.co.uk/products/tema-mill/laboratory-disc-mill.Google Scholar
  18. [18]
    D.C. Montgomery, Design and Analysis of Experiments, 8th Ed., John Wiley & Sons, Inc., USA, New Jersey, 2012, p. 752.Google Scholar
  19. [19]
    Met-Chem Canada Inc., Feasibility Study on the Whabouchi Lithium Deposit and Hydromet Plant, NI 43-101 Technical Report, Prepared for Nemaska Lithium Inc, 2014.Google Scholar
  20. [20]
    T.N.A.S.T. Mustafa, S.R.R. Munusamy, D.N.U. Lan, and N.F.M. Yunos, Physical and structural transformations of Perlis carbonate rocks via mechanical activation route, Procedia Chem., 19(2016), p. 673.CrossRefGoogle Scholar
  21. [21]
    P. Baláž, Mechanochemistry in Nanoscience and Minerals Engineering, 1st Ed., Springer-Verlag Berlin Heidelberg, Berlin, 2008, p. 413.Google Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nathália Vieceli
    • 1
  • Carlos A. Nogueira
    • 2
  • Manuel F. C. Pereira
    • 3
  • Fernando O. Durão
    • 3
  • Carlos Guimarães
    • 3
  • Fernanda Margarido
    • 1
  1. 1.Center for Innovation, Technology and Policy Research – IN+, Instituto Superior TécnicoUniversity of LisbonLisboaPortugal
  2. 2.LNEG – Laboratório Nacional de Energia e Geologia, I.P., Campus do LumiarLisboaPortugal
  3. 3.CERENA – Centro de Recursos Naturais e Ambiente, DECivil, Instituto Superior TécnicoUniversity of LisbonLisboaPortugal

Personalised recommendations