Synthesis of titanium oxycarbonitride by carbothermal reduction and nitridation of ilmenite with recycling of polyethylene terephthalate (PET)

  • Eltefat Ahmadi
  • Ahmad Fauzi
  • Hashim Hussin
  • Norlia Baharun
  • Kamar Shah Ariffin
  • Sheikh Abdul RezanEmail author


An innovative and sustainable carbothermal reduction and nitridation (CTRN) process of ilmenite (FeTiO3) using a mixture of polyethylene terephthalate (PET) and coal as the primary reductant under an H2–N2 atmosphere was proposed. The use of PET as an alternative source of carbon not only enhances the porosity of the pellets but also results in the separation of Fe from titanium oxycarbonitride (TiO x C y N z ) particles because of the differences in surface tension. The experiments were carried out at 1250°C for 3 h using four different PET contents ranging from 25wt% to 100wt% in the reductant. X-ray diffraction (XRD), scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDX), and LECO elemental analysis were used to study the phases and microstructures of the reduced samples. In the case of 75wt% PET, iron distinctly separated from the synthesized TiO x C y N z phase. With increasing PET content in the sample, the reduction and nitridation rates substantially increased. The synthesis of an oxycarbonitride with stoichiometry of TiO0.02C0.13N0.85 with minimal intermediate titanium sub-oxides was achieved. The results also showed that the iron particles formed from CTRN of FeTiO3 exhibited a spherical morphology, which is conducive for Fe removal via the Becher process.


carbothermal reduction nitridation polyethylene terephthalate titanium oxycarbonitride ilmenite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the financial support from Universiti Sains Malaysia (USM) Fellowship (APEX 1002/JHEA/ATSG4001). This work was also financially supported by USM and Ministry of Higher Education (MOHE) of Malaysia through Fundamental Research Grant Scheme (FRGS) (Nos. 203/PBAHAN/6071230 and 203/PBAHAN/607126) and Research University Grant for Individual (RUI) from USM (No. 1001/PBAHAN/814273). The authors are also thankful to Dr. Hazman Haji Seli from the Faculty of Chemical Engineering, Universiti Teknologi MARA Sarawak at Kota Samarahan for providing Mukah–Balingian coal. Special thanks are given to USM technicians Mr. Shahrul and Mr. Syafiq for supporting the experimental work.


  1. [1]
    A. Adipuri, Y. Li, G.Q. Zhang, and O. Ostrovski, Chlorination of reduced ilmenite concentrates and synthetic rutile, Int. J. Miner. Process., 100(2011), No. 3-4, p. 166.CrossRefGoogle Scholar
  2. [2]
    A. Adipuri, G.Q. Zhang, and O. Ostrovski, Chlorination of titanium oxycarbonitride produced by carbothermal nitridation of rutile, Ind. Eng. Chem. Res., 48(2009), No. 2, p. 779.CrossRefGoogle Scholar
  3. [3]
    D.P. Xiang, Y. Liu, M.J. Tu, Y.Y. Li, and W.P. Chen, Synthesis of nano Ti(C, N) powder by mechanical activation and subsequent carbothermal reduction-nitridation reaction, Int. J. Refract. Met. Hard Mater., 27(2009), No. 1, p. 111.CrossRefGoogle Scholar
  4. [4]
    Y. Peng, H.Z. Miao, and Z.J. Peng, Development of TiCN-based cermets: mechanical properties and wear mechanism, Int. J. Refract. Met. Hard Mater., 39(2013), p. 78.CrossRefGoogle Scholar
  5. [5]
    A. Mosbah, A. Calka, and D. Wexler, Rapid synthesis of titanium nitride powder by electrical discharge assisted mechanical milling, J. Alloys Compd., 424(2006), No. 1-2, p. 279.CrossRefGoogle Scholar
  6. [6]
    A. Chrysanthou and N. Hassine, The observation and crystal structure of titanium oxycarbonitride, Powder Diffr., 9(1994), No. 3, p. 202.CrossRefGoogle Scholar
  7. [7]
    D.T. Dam, K.D. Nam, H. Song, X. Wang, and J.M. Lee, Partially oxidized titanium carbonitride as a non-noble catalyst for oxygen reduction reactions, Int. J. Hydrogen Energy, 37(2012), No. 20, p. 15135.CrossRefGoogle Scholar
  8. [8]
    J.R. Groza, J.D. Curtis, and M. Krämer, Field-assisted sintering of nanocrystalline titanium nitride, J. Am. Ceram. Soc., 83(2000), No. 5, p. 1281.CrossRefGoogle Scholar
  9. [9]
    H. Kuwahara, N. Mazaki, M. Takahashi, T. Watanabe, X. Yang, and T. Aizawa, Mechanical properties of bulk sintered titanium nitride ceramics, Mater. Sci. Eng. A, 319-321(2001), p. 687.CrossRefGoogle Scholar
  10. [10]
    J.J. Ru, Y.X. Hua, C.Y. Xu, Q.B. Zhang, D. Wang, and K. Gong, Synthesis of TiN from FeTiO3 by microwave-assisted carbothermic reduction–nitridation, J. Alloys Compd., 583(2014), p. 121.CrossRefGoogle Scholar
  11. [11]
    A.P. Serro, C. Completo, R. Colaço, F. dos Santos, C.L. da Silva, J.M.S. Cabral, H. Araújo, E. Pires, and B. Saramago, A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications, Surf. Coat. Technol., 203(2009), No. 24, p. 3701.CrossRefGoogle Scholar
  12. [12]
    R. Gupta, S. Soni, and D.M. Phase, Improvement of oxidation resistance of TiCN films prepared by laser alloying, Appl. Phys. A, 118(2015), No. 1, p. 191.CrossRefGoogle Scholar
  13. [13]
    T. Matsuda and H. Matsubara, Thermophysical and elastic properties of titanium carbonitrides containing molybdenum and tungsten, J. Alloys Compd., 562(2013), p. 90.CrossRefGoogle Scholar
  14. [14]
    S.A. Rezan, G.Q. Zhang, and O. Ostrovski, Carbothermal reduction and nitridation of ilmenite concentrates, ISIJ Int., 52(2012), No. 3, p. 363.CrossRefGoogle Scholar
  15. [15]
    Q.Y. Wang, J.X. Song, J.Y. Wu, S.Q. Jiao, J.G. Hou, and H.M. Zhu, A new consumable anode material of titanium oxycarbonitride for the USTB titanium process, Phys. Chem. Chem. Phys., 16(2014), No. 17, p. 8086.CrossRefGoogle Scholar
  16. [16]
    S.A. Rezan, A. Adipuri, G.Q. Zhang, and O. Ostrovski, Carbothermal reduction and nitridation of ilmenite concentrates and chlorination of the reduced samples, [in] Proceedings of the XXV International Mineral Processing Congress (IMPC 2010), Brisbane, 2010, p. 1585.Google Scholar
  17. [17]
    S.A. Rezan, G.Q. Zhang, and O. Ostrovski, Phase development in carbothermal reduction and nitridation of ilmenite concentrates, High Temp. Mater. Processes, 31(2012), No. 4-5, p. 381.CrossRefGoogle Scholar
  18. [18]
    S.Q. Jiao and H.M. Zhu, Electrolysis of Ti2CO solid solution prepared by TiC and TiO2, J. Alloys Compd., 438(2007), No. 1-2, p. 243.CrossRefGoogle Scholar
  19. [19]
    M. Ma, D.H. Wang, W.G. Wang, X.H. Hu, X.B. Jin, and G.Z. Chen, Extraction of titanium from different titania precursors by the FFC Cambridge process, J. Alloys Compd., 420(2006), No. 1-2, p. 37.CrossRefGoogle Scholar
  20. [20]
    X. Fu, Y. Wang, L. Xiong, and F. Wei, Enhancement of the low temperature chlorination of ilmenite with CCl4 by adding Cl2, J. Alloys Compd., 486(2009), No. 1-2, p. 365.CrossRefGoogle Scholar
  21. [21]
    K.S. Geetha and G.D. Surender, Experimental and modelling studies on the aeration leaching process for metallic iron removal in the manufacture of synthetic rutile, Hydrometallurgy, 56(2000), No. 1, p. 41.CrossRefGoogle Scholar
  22. [22]
    L.C. de Santa Maria, Preparation of soluble TiCl4 catalyst modified with some metal chlorides and its use for ethylene and propylene homopolymerization, Polymer, 36(1995), No. 1, p. 217.CrossRefGoogle Scholar
  23. [23]
    R.O. Suzuki, T.N. Harada, T. Matsunaga, T.N. Deura, and K. Ono, Titanium powder prepared by magnesiothermic reduction of Ti2+ in molten salt, Metall. Mater. Trans. B, 30(1999), No. 3, p. 403.CrossRefGoogle Scholar
  24. [24]
    D.S. van Vuuren, S.J. Oosthuizen, and M.D. Heydenrych, Titanium production via metallothermic reduction of TiCl4 in molten salt: problems and products, J. S. Afr. Inst. Min. Metall., 111(2011), No. 3, p. 141.Google Scholar
  25. [25]
    S.A. Rezan, G.Q. Zhang, O. Ostrovski, and L. Prentice, Carbothermal reduction and nitridation of titanium dioxide in a H2-N2 gas mixture, J. Am. Ceram. Soc., 94(2011), No. 11, p. 3804.CrossRefGoogle Scholar
  26. [26]
    J.R. Dankwah, P. Koshy, and V. Sahajwalla, Reduction of FeO in EAF steelmaking slag by blends of metallurgical coke and end-of-life polyethylene terephthalate, Ironmaking Steelmaking, 41(2014), No. 6, p. 401.CrossRefGoogle Scholar
  27. [27]
    S. Kongkarat, R. Khanna, P. Koshy, P. O’Kane, and V. Sahajwalla, Recycling waste polymers in EAF steelmaking: Influence of polymer composition on carbon/slag interactions, ISIJ Int., 52(2012), No. 3, p. 385.CrossRefGoogle Scholar
  28. [28]
    C.M. Zhang, S.W. Chen, X.C. Miao, and H. Yuan, Reduction experiment of iron scale by adding waste plastics, J. Environ. Sci., 21(2009), Suppl. 1, p. S48.Google Scholar
  29. [29]
    V. Trinkel, N. Kieberger, T. Bürgler, H. Rechberger, and J. Fellner, Influence of waste plastic utilisation in blast furnace on heavy metal emissions, J. Cleaner Prod., 94(2015), p. 312.CrossRefGoogle Scholar
  30. [30]
    J.M.L. Reis, R. Chianelli-Junior, J.L. Cardoso, and F.J.V. Marinho, Effect of recycled PET in the fracture mechanics of polymer mortar, Constr. Build. Mater., 25(2011), No. 6, p. 2799.CrossRefGoogle Scholar
  31. [31]
    N. George and T. Kurian, Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste, Ind. Eng. Chem. Res., 53(2014), No. 37, p. 14185.CrossRefGoogle Scholar
  32. [32]
    J.B. Parra, C.O. Ania, A. Arenillas, F. Rubiera, J.M. Palacios, and J.J. Pis, Textural development and hydrogen adsorption of carbon materials from PET waste, J. Alloys Compd., 379(2004), No. 1-2, p. 280.CrossRefGoogle Scholar
  33. [33]
    M. Pohořelý, M. Vosecký, P. Hejdová, M. Punčochář, S. Skoblja, M. Staf, J. Vošta, B. Koutský, and K. Svoboda, Gasification of coal and PET in fluidized bed reactor, Fuel, 85(2006), No. 17-18, p. 2458.CrossRefGoogle Scholar
  34. [34]
    M.A.R. Dewan, G.Q. Zhang, and O. Ostrovski, Phase development in carbothermal reduction of ilmenite concentrates and synthetic rutile, ISIJ Int., 50(2010), No. 5, p. 647.CrossRefGoogle Scholar
  35. [35]
    S.N. Ali, M.F. Yusop, K. Ismail, Z.A. Ghani, M.F. Abdullah, M.A.M. Ishak, and A.R. Mohamed, Tetralin-glycerol as solvent in direct liquefaction of Mukah Balingian coal, Energy Procedia, 52(2014), p. 618.CrossRefGoogle Scholar
  36. [36]
    A. Yaraghi, M.H.A. Sapri, N. Baharun, S.A. Rezan, N.I. Shoparwe, S. Ramakrishnan, K.S. Ariffin, M.N.A. Fauzi, H.B. Zabidi, H. Ismail, and H.H. Seli, Aeration leaching of iron from nitrided Malaysian ilmenite reduced by polystyrene-coal reductant, Procedia Chem., 19(2016), p. 715.CrossRefGoogle Scholar
  37. [37]
    S. Lashkari and B. Kruczek, Development of a fully automated soap flowmeter for micro flow measurements, Flow Meas. Instrum., 19(2008), No. 6, p. 397.CrossRefGoogle Scholar
  38. [38]
    M. Sundararajan, K.H. Bhat, S. Velusamy, N. Babu, M.E.K. Janaki, S. Sasibhooshanan, and P.N. Mohan Das, Characterization of ilmenite from Kerala coastline, India: implications in the production of synthetic rutile, J. Miner. Mater. Charact. Eng., 8(2009), No. 6, p. 427.Google Scholar
  39. [39]
    S. Volker and K. Mario, Primary and secondary pseudobrookite minerals in volcanic rocks from the Katzenbuckel Alkaline Complex, southwestern Germany, Swiss Bull. Mineral. Petrol., 83(2003), No. 2, p. 145.Google Scholar
  40. [40]
    M.W. Chase Jr., NIST-JANAF Thermochemical Tables, 4th Ed., J. Phys. Chem. Ref. Data, 1998, No. 9, p. 1758.Google Scholar
  41. [41]
    D.G. Jones, Reaction sequences in the reduction of ilmenite: 2. Gaseous reduction by carbon monoxide, Trans. Inst. Min. Metall., 82(1973), p. C186.Google Scholar
  42. [42]
    Y. Zhao and F. Shadman, Kinetics and mechanism of ilmenite reduction with carbon monoxide, AIChE J., 36(1990), No. 9, p. 1433.CrossRefGoogle Scholar
  43. [43]
    C.K. Ande and M.H.F. Sluiter, First-principles calculations on stabilization of iron carbides (Fe3C, Fe5C2, and η-Fe2C) in steels by common alloying elements, Metall. Mater. Trans. A, 43(2012), No. 11, p. 4436.CrossRefGoogle Scholar
  44. [44]
    S. Vijayakumar and P.R. Rajakumar, Infrared spectral analysis of waste pet samples, Int. Lett. Chem. Phys. Astron., 4(2012), p. 58.CrossRefGoogle Scholar
  45. [45]
    G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Ed., John Wiley and Sons, Ltd., Chichester, 2001, p. 15.Google Scholar
  46. [46]
    Z.Y. Chen, J.N. Hay, and M.J. Jenkins, The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy, Thermochim. Acta, 552(2013), p. 123.CrossRefGoogle Scholar
  47. [47]
    J. Zhang, G. Zhang, and O. Ostrovski, An experimental investigation of the gasification of graphite by carbon dioxide, Can. Metall. Q., 55(2016), No. 1, p. 104.CrossRefGoogle Scholar
  48. [48]
    E. Ahmadi, S.A.R.B.S.A. Hamid, H.B. Hussin, S.R.N.B. Baharun, K.S.B. Ariffin, and M.N. Ahmad Fauzi, The preparation of iron-free TiCl4 from reduced and nitrided ilmenite by polyethylene terephthalate, INROADS Int. J. Jaipur Natl. Univ., 5(2016), No. 1, p. 11.CrossRefGoogle Scholar
  49. [49]
    F.A. Halden and W.D. Kingery, Surface tension at elevated temperatures: II. Effect of C, N, O and S on liquid iron surface tension and interfacial energy with Al2O3, J. Phys. Chem., 59(1955), No. 6, p. 557.CrossRefGoogle Scholar
  50. [50]
    C.J. Xuan, H. Shibata, Z. Zhao, P.G. Jönsson, and K. Nakajima, Wettability of TiN by liquid iron and steel, ISIJ Int., 55(2015), No. 8, p. 1642.CrossRefGoogle Scholar
  51. [51]
    W.D. Kingery and M. Humenik Jr., Surface tension at elevated temperatures: I. Furnace and method for use of the sessile drop method; surface tension of silicon, iron and nickel, J. Phys. Chem., 57(1953), No. 3, p. 359.CrossRefGoogle Scholar
  52. [52]
    Surface Energy and Thermodynamics [2016-02-10], Scholar
  53. [53]
    R.J.D. Tilley, Understanding Solids: The Science of Materials, 2nd Ed., John Wiley & Sons Ltd., West Sussex, 2013.Google Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Eltefat Ahmadi
    • 1
  • Ahmad Fauzi
    • 1
  • Hashim Hussin
    • 1
  • Norlia Baharun
    • 1
  • Kamar Shah Ariffin
    • 1
  • Sheikh Abdul Rezan
    • 1
    Email author
  1. 1.School of Materials & Mineral Resources EngineeringUniversiti Sains Malaysia, Engineering CampusNibong TebalMalaysia

Personalised recommendations