Microstructure evolution and mechanical properties of a large-sized ingot of Mg−9Gd−3Y−1.5Zn−0.5Zr (wt%) alloy after a lower-temperature homogenization treatment

  • Zhi-yong XueEmail author
  • Yue-juan Ren
  • Wen-bo Luo
  • Yu Ren
  • Ping Xu
  • Chao Xu


In this paper, a large-sized ingot of Mg−9Gd−3Y−1.5Zn−0.5Zr (wt%) alloy with a diameter of 600 mm was successfully prepared by the semi-continuous casting method. The alloy was subsequently annealed at a relatively low temperature of 430°C for 12 h as a homogenization treatment. The microstructure and room-temperature mechanical properties of the alloy were investigated systematically. The results show that the as-cast alloy contained a mass of discontinuous lamellar-shaped 18R long-period stacking ordered (LPSO) phases with a composition of Mg10ZnY and an α-Mg matrix, along with net-shaped Mg5(Y,Gd) eutectic compounds at the grain boundaries. Most of the eutectic compounds dissolved after the homogenization treatment. Moreover, the amount and dimensions of the lamellar-shaped LPSO phase obviously increased after the homogenization treatment. The structure of the phase transformed into 14H-type LPSO with composition Mg12Zn(Y,Gd). The mechanical properties of the heat-treated large-sized alloy ingot are uniform. The ultimate tensile strength (UTS) and tensile yield strength (TYS) of the alloy reached 207.2 MPa and 134.8 MPa, respectively, and the elongation was 3.4%. The high performances of the large-sized alloy ingot after the homogenization treatment is attributed to the strengthening of the α-Mg solid solution and to the plentiful LPSO phase distributed over the α-Mg matrix.


magnesium alloys ingots homogenization microstructural evolution mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Youth Science Fund Project of the National Natural Science Fund of China (No. 51401070), the Program for New Century Excellent Talents in Universities (No. NCET-12-0849), and the Fundamental Research Funds for the Central Universities (No. 2014ZZD03).


  1. [1]
    Q.D. Wang, J. Chen, Z. Zhao, and S.M. He, Microstructure and super high strength of cast Mg−8.5Gd−2.3Y−1.8Ag− 0.4Zr alloy, Mater. Sci. Eng. A, 528(2010), No. 1, p. 323.CrossRefGoogle Scholar
  2. [2]
    C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, and X.Y. Lv, Ultra high-strength Mg−Gd−Y−Zn−Zr alloy sheets processed by large-strain hot rolling and ageing, Mater. Sci. Eng. A, 547(2012), p. 93.CrossRefGoogle Scholar
  3. [3]
    D.J. Li, X.Q. Zeng, J. Dong, C.Q. Zhai, and W.J. Ding, Microstructure evolution of Mg−10Gd−3Y−1.2Zn−0.4Zr, J. Alloys Compd., 468(2009), No. 1-2, p. 164.CrossRefGoogle Scholar
  4. [4]
    D. Griffiths, Explaining texture weakening and improved formability in magnesium rare earth alloys, Mater. Sci. Technol., 31(2015), No. 1, p. 10.CrossRefGoogle Scholar
  5. [5]
    X. Liu, Q.C. Le, Z.Q. Zhang, L. Bao, Z.X. Fan, and J.Z. Cui, Effects of casting process on microstructures and flow stress behavior of Mg−9Gd−3Y−1.5Zn−0.8Zr semi-continuous casting billets, J. Magnesium Alloys, 2(2014), No. 4, p. 342.CrossRefGoogle Scholar
  6. [6]
    J.W. Chang, J. Duo, Y.Z. Xiang, H.Y. Yang, W.J. Ding, and Y.H. Peng, Influence of Nd and Y additions on the corrosion behavior of extruded Mg−Zn−Zr alloys, Int. J. Miner. Metall. Mater., 18(2011), No. 2, p. 203.CrossRefGoogle Scholar
  7. [7]
    T. Itoi, K. Takahashi, H. Moriyama, and M. Hirohashi, A high-strength Mg−Ni−Y alloy sheet with a long-period ordered phase prepared by hot-rolling, Scripta Mater., 59(2008), No. 10, p. 1155.CrossRefGoogle Scholar
  8. [8]
    Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa, Mater. Trans., 42(2001), No. 7, p. 1172.CrossRefGoogle Scholar
  9. [9]
    J.F. Nie, Precipitation and hardening in Magnesium alloys, Metall. Mater. Trans. A, 43A(2012), No. 11, p. 3891.CrossRefGoogle Scholar
  10. [10]
    M. Yamasaki, K. Hashimoto, K. Hagihara, and Y. Kawamura, Effect of multimodal microstructure evolution on mechanical properties of Mg−Zn−Y extruded alloy, Acta Mater., 59(2011), No. 9, p. 3646.CrossRefGoogle Scholar
  11. [11]
    M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura, Mechanical properties of warm-extruded Mg−Zn−Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scripta Mater., 53(2005), No. 7, p. 799.CrossRefGoogle Scholar
  12. [12]
    J.F. Nie, Y.M. Zhu, and A.J. Morton, On the structure, transformation and deformation of long-period stacking ordered phase in Mg-Y-Zn alloys, Metall. Mater. Trans. A, 45(2014), No. 8, p. 3338.CrossRefGoogle Scholar
  13. [13]
    Y.X. Du, Y.J. Wu, L.M. Peng, J. Chen, X.Q. Zeng, and W.J. Ding, Formation of lamellar phase with 18R-type LPSO structure in an as-cast Mg96Gd3Zn1(at%) alloy, Mater. Lett., 169(2016), p. 168.CrossRefGoogle Scholar
  14. [14]
    C. Xu, M.Y. Zheng, K. Wu, E.D. Wang, G.H. Fan, S.W. Xu, S. Kamado, X.D. Liu, G.J. Wang, and X.Y. Lv, Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg−Gd−Y−Zn−Zr alloy, Mater. Sci. Eng. A, 559(2013), p. 364.CrossRefGoogle Scholar
  15. [15]
    M. Yamasaki, K. Hagihara, S. Inoue, J.P. Hadorn, and Y. Kawamura, Crystallographic classification of kink bands in an extruded Mg−Zn−Y alloy using intragranular misorientation axis analysis, Acta Mater., 61(2013), No. 6, p. 2065.CrossRefGoogle Scholar
  16. [16]
    T. Homma, N. Kunito, and S. Kamado, Fabrication of extraordinary high-strength magnesium alloy by hot extrusion, Scripta Mater., 61(2009), No. 6, p. 644.CrossRefGoogle Scholar
  17. [17]
    L. Zhang, Z. Liu, and P.L. Mao, Effect of annealing on the microstructure and mechanical properties of Mg−2.5Zn−0.5Y alloy, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 779.CrossRefGoogle Scholar
  18. [18]
    Z.Q. Wang, B. Zhang, D.J. Li, R. Fritsch, X.Q. Zeng, H.J. Roven, and W.J. Ding, Effect of heat treatment on microstructures and mechanical properties of high vacuum die casting Mg-8Gd-3Y-0.4Zr magnesium alloy, Trans. Nonferrous Met. Soc. China, 24(2014), No. 12, p. 3762.CrossRefGoogle Scholar
  19. [19]
    J. D. Robson, Effect of rare-earth additions on the texture of wrought magnesium alloys: the role of grain boundary segregation, Metall. Mater. Trans. A, 45(2014), No. 8, p. 3205.CrossRefGoogle Scholar
  20. [20]
    F.M. Lu, A.B. Ma, J.H. Jiang, D.H. Yang, and Q. Zhou, Review on long-period stacking-ordered structures in Mg−Zn−RE alloys, Rare Met., 31(2012), No. 3, p. 303.CrossRefGoogle Scholar
  21. [21]
    J.C. Li, Z.L. He, P.H. Fu, Y.J. Wu, L.M. Peng, and W.J. Ding, Heat treatment and mechanical properties of a high-strength cast Mg−Gd−Zn alloy, Mater. Sci. Eng. A, 651(2016), p. 745.CrossRefGoogle Scholar
  22. [22]
    G.D. Zhang, X.G. Li, M.L. Ma, Y.J. Li, G.L. Shi, J.W. Yuan, and K. Zhang, Homogenization heat treatment of Mg−7.68Gd−4.88Y−1.32Nd−0.63Al−0.05Zr alloy, J. Rare Earths, 32(2014), No. 5, p. 445.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhi-yong Xue
    • 1
    Email author
  • Yue-juan Ren
    • 1
  • Wen-bo Luo
    • 2
  • Yu Ren
    • 1
  • Ping Xu
    • 3
  • Chao Xu
    • 1
  1. 1.School of Energy, Power and Mechanical EngineeringNorth China Electric Power UniversityBeijingChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.College of ScienceRocket Force University of EngineeringXi’anChina

Personalised recommendations