Advertisement

Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles

  • Deepak PathaniaEmail author
  • Rishu Katwal
  • Harpreet Kaur
Article

Abstract

In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet–visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.

Keywords

aluminum oxide nanoparticles electrochemical preparation photocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.Q. Jiao, M.B. Yue, Y.M. Wang, and M.Y. He, Synthesis of morphology-controlled mesoporous transition aluminas derived from the decomposition of alumina hydrates, Microporous Mesoporous Mater., 147(2012), No. 1, p. 167.CrossRefGoogle Scholar
  2. [2]
    C.B. Reid, J.S. Forrester, H.J. Goodshaw, E.H. Kisi, and G.J. Suaning, A study in the mechanical milling of alumina powder, Ceram. Int., 34(2008), No. 6, p. 1551.CrossRefGoogle Scholar
  3. [3]
    F. Mirjalili, M. Hasmaliza, and L.C. Abdullah, Size-controlled synthesis of nano a-alumina particles through the solgel method, Ceram. Int., 36(2010), No. 4, p. 1253.CrossRefGoogle Scholar
  4. [4]
    R. Kavitha and V. Jayaram, Deposition and characterization of alumina films produced by combustion flame pyrolysis, Surf. Coat. Technol., 201(2006), No. 6, p. 2491.CrossRefGoogle Scholar
  5. [5]
    D.H. Trinh, M. Ottosson, M. Collin, I. Reineck, L. Hultman, and H. Högberg, Nanocomposite Al2O3-ZrO2 thin films grown by reactive dual radio-frequency magnetron sputtering, Thin Solid Films, 516(2008), No. 15, p. 4977.CrossRefGoogle Scholar
  6. [6]
    L.H. Qu, C.Q. He, Y. Yang, Y.L. He, and Z.M. Liu, Hydrothermal synthesis of alumina nanotubes templated by anionic surfactant, Mater. Lett., 59(2005), No. 29-30, p. 4034.CrossRefGoogle Scholar
  7. [7]
    K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai, and W. Jiang, Synthesis of ultrafine Al2O3 powders by pulsed laser ablation, J. Nanopart. Res., 2(2000), No. 1, p. 75.CrossRefGoogle Scholar
  8. [8]
    X.S. Peng, L.D. Zhang, G.W. Meng, X.F. Wang, Y.W. Wang, C.Z. Wang, and G.S. Wu, Photoluminescence and infrared properties of a-Al2O3 nanowires and nanobelts, J. Phys. Chem. B, 106(2002), No. 43, p. 11163.CrossRefGoogle Scholar
  9. [9]
    A. Rai, D. Lee, K. Park, and M.R. Zachariah, Importance of phase change of aluminum in oxidation of aluminum nanoparticles, J. Phys. Chem. B, 108(2004), No. 39, p. 14793.CrossRefGoogle Scholar
  10. [10]
    W.F. Li, X.L. Ma, W.S. Zhang, W. Zhang, Y. Li, and Z.D. Zhang, Synthesis and characterization of Al2O3 nanorods, Phys. Status Solidi A, 203(2006), No. 2, p. 294.CrossRefGoogle Scholar
  11. [11]
    J.S. Banait, B. Singh, and H. Kaur, Electrochemical synthesis of zinc(II) phenoxides and their coordination compounds, Portugaliae Electrochim. Acta, 25(2007), No. 4, p. 435.CrossRefGoogle Scholar
  12. [12]
    D. Suteu, C. Zaharia, D. Bilba, R. Muresan, A. Popescu, and A. Muresan, Decolorization wastewaters from the textile industry: physical methods, chemical methods, Ind. Textila, 60(2009), No. 5, p. 254.Google Scholar
  13. [13]
    C. Zaharia, D. Suteu, A. Muresan, R. Muresan, and A. Popescu, Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide, Environ. Eng. Manage. J., 8(2009), No. 6, p. 1359.Google Scholar
  14. [14]
    R.A. Schnick, The impetus to register new therapeutants for aquaculture, Prog. Fish Cult., 50(1988), No. 4, p. 190.CrossRefGoogle Scholar
  15. [15]
    S. Srivastava, R. Sinha, and D. Roy, Toxicological effects of malachite green, Aquat. Toxicol., 66(2004), No. 3, p. 319.CrossRefGoogle Scholar
  16. [16]
    S.J. Culp and F.A. Beland, Malachite green: a toxicological review, Int. J. Toxicol., 15(1996), No. 3, p. 219.CrossRefGoogle Scholar
  17. [17]
    D.J. Alderman, Malachite green: a review. J. Fish Dis., 8(1985), p. 298.Google Scholar
  18. [18]
    E. Oguz and B. Keskinler, Comparison among O3, PAC adsorption, O3/HCO3, O3/H2O2 and O3/PAC processes for the removal of Bomaplex Red CR-L dye from aqueous solution, Dyes Pigm., 74(2007), No. 2, p. 329.CrossRefGoogle Scholar
  19. [19]
    R. Katwal, H. Kaur, G. Sharma, M. Naushad, and D. Pathania, Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity, J. Ind. Eng. Chem., 31(2015), p. 173.CrossRefGoogle Scholar
  20. [20]
    T. Kim, C. Park, J. Yang, and S. Kim, Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation, J. Hazard. Mater., 112(2004), No. 1-2, p. 95.CrossRefGoogle Scholar
  21. [21]
    D. Mohan, K.P. Singh, G. Singh, and K. Kumar, Removal of dyes from wastewater using flyash, a low-cost adsorbent, Ind. Eng. Chem. Res., 41(2002), No. 15, p. 3688.CrossRefGoogle Scholar
  22. [22]
    S. Wang, Y. Booyjoo, A. Choueib, and Z.H. Zhu, Removal of dyes from aqueous solution using fly ash and red mud, Water Res., 39(2005), No. 1, p. 129.CrossRefGoogle Scholar
  23. [23]
    V.K. Gupta, S. Agarwal, D. Pathania, N.C. Kothiyal, and G. Sharma, Use of pectin–thorium(IV) tungstomolybdate nanocomposite for photocatalytic degradation of methylene blue, Carbohydr. Polym., 96(2013), No. 1, p. 277.CrossRefGoogle Scholar
  24. [24]
    P. Xu, G.M. Zeng, D.L. Huang, C. Lai, M.H. Zhao, Z. Wei, N.J. Li, C. Huang, and G.X. Xie, Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis, Chem. Eng. J., 203(2012), p. 423.CrossRefGoogle Scholar
  25. [25]
    M.N.V.R. Kumar, T.R. Sridhari, K.D. Bhavani, and P.K. Dutta, Trends in color removal from textile mill effluents, Colourage, 45(1998), No. 8, p. 25.Google Scholar
  26. [26]
    D. Beydoun, R. Amal, G. Low, and S. McEvoy, Role of nanoparticles in photocatalysis, J. Nanopart. Res., 1(1999), No. 4, p. 439.CrossRefGoogle Scholar
  27. [27]
    N. Serpone, D. Lawless, and E. Pelizzetti, Subnanosecond characteristics and photophysics of nanosized TiO2 particulates from Rpart = 10 A to 134 A: Meaning for heterogeneous Photocatalysis, Fine Particles Sci. Technol., 12(1996), p. 657.CrossRefGoogle Scholar
  28. [28]
    T. Shiragami, S. Fukami, Y. Wada, and S. Yanagida, Semiconductor photocatalysis: effect of light intensity on nanoscale CdS-catalyzed photolysis of organic substrates, J. Phys. Chem., 97(1993), No. 49, p. 12882.CrossRefGoogle Scholar
  29. [29]
    T. Murakata, R. Yamamoto, Y. Yoshida, M. Hinohara, T. Ogata, and S. Sato, Preparation of ultra fine TiO2 particles dispersible in organic solvents and their photocatalytic properties, J. Chem. Eng. Jpn., 31(1998), No. 1, p. 21.CrossRefGoogle Scholar
  30. [30]
    C. Kormann, D.W. Bahnemann, and M.R. Hoffmann, Environmental photochemistry: is iron oxide (hematite) an active photocatalyst? A comparative study: a-Fe2O3, ZnO, TiO2, J. Photochem. Photobiol. A, 48(1989), No. 1, p. 161.CrossRefGoogle Scholar
  31. [31]
    V.K. Gupta, D. Pathania, N.C. Kothiyal, and G. Sharma, Polyaniline zirconium(IV) silicophosphate nanocomposite for remediation of methylene blue dye from waste water, J. Mol. Liq., 190(2014), p. 139.CrossRefGoogle Scholar
  32. [32]
    S.A. Abo-Farha, Photocatalytic degradation of monoazo and diazo dyes in wastewater on nanometer-sized TiO2, J. Am. Sci., 6(2010), No. 11, p. 130.Google Scholar
  33. [33]
    V.K. Gupta, D. Pathania, M. Asif, and G. Sharma, Liquid phase synthesis of pectin–cadmium sulfide nanocomposite and its photocatalytic and antibacterial activity, J. Mol. Liq., 196(2014), p. 107.CrossRefGoogle Scholar
  34. [34]
    V.K. Gupta, T.A. Saleh, D. Pathania, B.S. Rathore, and G.A. Sharma, A cellulose acetate based nanocomposite for photocatalytic degradation of methylene blue dye under solar light, Ionics, 21(2015), No. 6, p. 1787.CrossRefGoogle Scholar
  35. [35]
    C.J. Huang, P.H. Chiu, Y.H. Wang, K.L. Chen, J.J. Linn, and C.F. Yang, Electrochemically controlling the size of gold nanoparticles, J. Electrochem. Soc., 153(2006), No. 12, p. D193.CrossRefGoogle Scholar
  36. [36]
    T. Picard, G. Cathalifaud-Feuillade, M. Mazet, and C. Vandensteendam, Cathodic dissolution in the electrocoagulation process using aluminium electrodes, J. Environ. Monit., 2(2000), No. 1, p. 77.CrossRefGoogle Scholar
  37. [37]
    B. Xu, J. Long, H. Tian, Y. Zhu, and X. Sun, Synthesis and characterization of mesoporous ?-alumina templated by saccharide molecules, Catal. Today, 147(2009), p. S46.CrossRefGoogle Scholar
  38. [38]
    H. Liu, G. Ning, Z. Gan, and Y. Lin, A simple procedure to prepare spherical a-alumina powders, Mater. Res. Bull., 44(2009), No. 4, p. 785.Google Scholar
  39. [39]
    R. Rogojan, E. Andronescu, C. Ghitulica, and S.B. Vasile, Synthesis and characterization of alumina nano-powder obtained by sol-gel method, UPB Sci. Bull. Ser. B., 73(2011), No. 2, p. 67.Google Scholar
  40. [40]
    W.H. Gitzen, Alumina as a Ceramic Material, The American Ceramic Society, Columbus, 1970.Google Scholar
  41. [41]
    J. Gangwara, K.K. Deya, K. Praveena, S.K. Tripathib, and A.K. Srivastavaa, Microstructure, phase formations and optical bands in nanostructured alumina, Adv. Mater. Lett., 2(2011), No. 6, p. 402.CrossRefGoogle Scholar
  42. [42]
    C.G. Zoski, Handbook of Electrochemistry, Elsevier, 2007, p. 27.Google Scholar
  43. [43]
    D.M. Seo, O. Borodin, D. Balogh, M. O’Connell, Q. Ly, S.D. Han, S. Passerini, and W.A. Henderson, Electrolyte solvation and ionic association: III. Acetonitrile-lithium salt mixtures–transport properties, J. Electrochem. Soc., 160(2013), No. 8, p. A1061.CrossRefGoogle Scholar
  44. [44]
    A.H. Abbar, Electrolytic preparation of copper powder with particle size less than 63µm, Al-Qadisiya J. Eng. Sci., 1(2008), No. 1, p. 32.Google Scholar
  45. [45]
    H.S. Goh, R. Adnan, and M.A. Farrukh, ZnO nanoflake arrays prepared via anodization and their performance in the photodegradation of methyl orange, Turk. J. Chem., 35(2011), No. 3, p. 375.Google Scholar
  46. [46]
    V. Piriyawong, V. Thongpool, P. Asanithi, and P. Limsuwan, Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique, J. Nanomater., 2012(2012), art. No. 819403.CrossRefGoogle Scholar
  47. [47]
    F. Li, W. Bi, T. Kong, and Q.H. Qin, Optical and photocatalytic properties of novel CuS nanoplate-based architectutes synthesised by a solvothermal route, Cryst. Res. Technol., 44(2009), No. 7, p. 729.CrossRefGoogle Scholar
  48. [48]
    V.S. Kortov, A.E. Ermakov, A.F. Zatsepin, and S.V. Nikiforov, Luminescence properties of nanostructured alumina ceramic, Radiat. Meas., 43(2008), No. 2-6, p. 341.CrossRefGoogle Scholar
  49. [49]
    V. Srivastava, C.H. Weng, V.K. Singh, and Y.C. Sharma, Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies, J. Chem. Eng. Data, 56(2011), No. 4, p. 1414.CrossRefGoogle Scholar
  50. [50]
    A. Rabiezadeh, A.M. Hadian, and A. Ataie, Preparation of alumina/titanium diboride nano-composite powder by milling assisted sol–gel method, Int. J. Refract. Met. Hard. Mater., 31(2012), p. 121.CrossRefGoogle Scholar
  51. [51]
    M.R. Karim, M.A. Rahman, M.A.J. Miah, H. Ahmad, M. Yanagisawa, and M. Ito, Synthesis of ?-alumina particles and surface characterization, Appl. Sci., 4(2011), No. 5, p. 344.Google Scholar
  52. [52]
    B. Sathyaseelan, I. Baskaran, and K. Sivakumar, Phase transition behavior of nanocrystalline Al2O3 powders, Soft Nanosci. Lett., 3(2013). No. 4, p. 69.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of ChemistryShoolini UniversitySolanIndia
  2. 2.Department of ChemistryPunjabi UniversityPatialaIndia

Personalised recommendations