Advertisement

A novel process for comprehensive utilization of vanadium slag

  • Li-ying Liu
  • Tao DuEmail author
  • Wen-jun Tan
  • Xin-pu Zhang
  • Fan Yang
Article

Abstract

Traditional processes for treating vanadium slag generate a huge volume of solid residue and a large amount of harmful gas, which cause serious environmental problems. In this study, a new process for the comprehensive utilization of vanadium slag was proposed, wherein zeolite A and a V2O5/TiO2 system were synthesized. The structural properties of the as-synthesized zeolite A and the V2O5/TiO2 system were characterized using various experimental techniques, including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and infrared spectroscopy. The results reveal that zeolite A and the V2O5/TiO2 system are successfully obtained with high purity. The results of gas adsorption measurements indicate that the prepared zeolite A exhibits high selectivity for CO2 over N2 and is a candidate material for CO2 capture from flue-gas streams.

Keywords

vanadium slag zeolite waste utilization structural properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Aarabi-Karasgani, F. Rashchi, N. Mostoufi, and E. Vahidi, Leaching of vanadium from LD converter slag using sulfuric acid, Hydrometallurgy, 102(2010), No. 1-4, p. 14.CrossRefGoogle Scholar
  2. [2]
    M.D. Okudan, A. Akcil, A. Tuncuk, and H. Deveci, Effect of parameters on vanadium recovery from by-products of the Bayer process, Hydrometallurgy, 152(2015), p. 76.CrossRefGoogle Scholar
  3. [3]
    J.H. Zhang, W. Zhang, L. Zhang, and S.Q. Gu, Mechanism of vanadium slag roasting with calcium oxide, Int. J. Miner. Process., 138(2015), p. 20.CrossRefGoogle Scholar
  4. [4]
    J. Waligora, D. Bulteel, P. Degrugilliers, D. Damidot, J.L. Potdevin, and M. Measson, Chemical and mineralogical characterization of LD converter steel slags: a multi-analytical techniques approach, Mater. Charact., 61(2010), No. 1, p. 39.CrossRefGoogle Scholar
  5. [5]
    X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Oxidation process of low-grade vanadium slag in presence of Na2CO3, Trans. Nonferrous Met. Soc. China., 21(2011), p. 1860.CrossRefGoogle Scholar
  6. [6]
    R.R. Moskalyk and A.M. Alfantazi, Processing of vanadium: a review, Miner. Eng., 16(2003), No. 9, p. 793.CrossRefGoogle Scholar
  7. [7]
    A. Burkardt, W. Weisweiler, J.A.A. van der Tillaart, A. Schafer Sindlinger, and E.S. Lox, Influence of the V2O5 loading on the structure and activity of V2O5/TiO2 SCR catalysts for vehicle application, Top. Catal., 16(2001), No. 1, p. 369.CrossRefGoogle Scholar
  8. [8]
    M.C. Carotta, M. Ferroni, S. Gherardi, V. Guidi, C. Malagù, G. Martinelli, M. Sacerdoti, M.L. Di Vona, S. Licoccia, and E. Traversa, Thick-film gas sensors based on vanadium–titanium oxide powders prepared by sol–gel synthesis, J. Eur. Ceram. Soc., 24(2004), No. 6, p. 1409.CrossRefGoogle Scholar
  9. [9]
    C.B. Rodella and V.R. Mastelaro, Structural characterization of the V2O5/TiO2 system obtained by the sol–gel method, J. Phys. Chem. Solids, 64(2003), No. 5, p. 833.CrossRefGoogle Scholar
  10. [10]
    O. Zegaoui, C. Hoang-Van, and M. Karroua, Selective catalytic reduction of nitric oxide by propane over vanadia–titania aerogels, Appl. Catal. B, 9(1996), No. 1-4, p. 211.CrossRefGoogle Scholar
  11. [11]
    M.A. Reiche, E. Ortelli, and A. Baiker, Vanadia grafted on TiO2–SiO2, TiO2 and SiO2 aerogels: structural properties and catalytic behaviour in selective reduction of NO by NH3, Appl. Catal. B, 23(1999), No. 2-3, p. 187.CrossRefGoogle Scholar
  12. [12]
    J. Diao, B. Xie, C.Q. Ji, X. Guo, Y.H. Wang, and X.J. Li, Growth of spinel crystals in vanadium slag and their characterization, Cryst. Res. Technol., 44(2009), No. 7, p. 707.CrossRefGoogle Scholar
  13. [13]
    V.Yu. Prokof’ev, N.E. Gordina, and A.M. Efremov, Synthesis of type A zeolite from mechanoactivated metakaolin mixtures, J. Mater. Sci., 48(2013), No. 18, p. 6276.CrossRefGoogle Scholar
  14. [14]
    C.B. Rodella, R.W.A. Franco, C.J. Magon, J.P. Donoso, L.A.O. Nunes, M.J. Saeki, M.A. Aegerter, and A.O. Florentino, V2O5/TiO2 catalyst xerogels: method of preparation and characterization, J. Sol Gel Sci. Technol., 25(2002), No. 1, p. 75.CrossRefGoogle Scholar
  15. [15]
    T. Du, L.Y. Liu, P. Xiao, S. Che, and H.M. Wang, Preparation of zeolite NaA for CO2 capture from nickel laterite residue, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 820.Google Scholar
  16. [16]
    T. Sakthivel, D.L. Reid, I. Goldstein, L. Hench, and S. Seal, Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation, Environ. Sci. Technol., 47(2013), No. 11, p. 5843.CrossRefGoogle Scholar
  17. [17]
    S.S. Rayalu, J.S. Udhoji, S.U. Meshram, R.R. Naidu, and S. Devotta, Estimation of crystallinity in flyash-based zeolite-A using XRD and IR spectroscopy, Curr. Sci., 89(2005), No. 12, p. 2147.Google Scholar
  18. [18]
    C.Y. Zhou, A. Alshameri, C.J. Yan, X.M. Qiu, H.Q. Wang, and Y.N. Ma, Characteristics and evaluation of synthetic 13X zeolite from Yunnan’s natural halloysite, J. Porous Mater., 20(2013), No. 4, p. 587.CrossRefGoogle Scholar
  19. [19]
    W.G. Lu, W.M. Verdegaal, J.M. Yu, P.B. Balbuena, H. Jeong, and H.C. Zhou, Building multiple adsorption sites in porous polymer networks for carbon capture applications, Energy Environ. Sci., 6(2013), p. 3559.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Li-ying Liu
    • 1
  • Tao Du
    • 1
    Email author
  • Wen-jun Tan
    • 1
  • Xin-pu Zhang
    • 1
  • Fan Yang
    • 1
  1. 1.School of MetallurgyNortheastern UniversityBeijingChina

Personalised recommendations