Advertisement

Covalent electron density analysis and surface energy calculation of gold with the empirical electron surface model

  • Bao-qin Fu
  • Zhi-lin LiEmail author
  • Wei Liu
Article

Abstract

Based on the empirical electron surface model (EESM), the covalent electron density of dangling bonds (CEDDB) was calculated for various crystal planes of gold, and the surface energy was calculated further. Calculation results show that CEDDB has a great influence on the surface energy of various index surfaces and the anisotropy of the surface. The calculated surface energy is in agreement with experimental and other theoretical values. The calculated surface energy of the close-packed (111) surface has the lowest surface energy, which agrees with the theoretical prediction. Also, it is found that the spatial distribution of covalent bonds has a great influence on the surface energy of various index surfaces. Therefore, CEDDB should be a suitable parameter to describe and quantify the dangling bonds and surface energy of various crystal surfaces.

Keywords

surface energy dangling bonds covalent bonds electron density gold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Guczi, A. Beck, and K. Frey, Role of promoting oxide morphology dictating the activity of Au/SiO2 catalyst in CO oxidation, Gold Bull., 42(2009), No.1, p.5.CrossRefGoogle Scholar
  2. [2]
    J. Li, N. Ta, W. Song, et al., Au/ZrO2 catalysts for low-temperature water gas shift reaction: influence of particle sizes, Gold Bull., 42(2009), No.1, p.48.CrossRefGoogle Scholar
  3. [3]
    Y. Ikezawa, Y. Koda, M. Shibuya, and H. Terashima, In situ FTIR study of pyrazine adsorbed on Au(111), Au(100) and Au(110) electrodes, Electronchim. Acta, 45(2000), No.13, p.2075.CrossRefGoogle Scholar
  4. [4]
    S. Surnev, B. Voigtländer, H.P. Bonzel, and W. W. Mullins, Anisotropic profile decay on perturbed Au(111) vicinal surfaces, Surf. Sci., 360(1996), No.1–3, p.242.CrossRefGoogle Scholar
  5. [5]
    W.R. Tyson and W.A. Miller, Surface free energies of solid metals: estimation from liquid surface tension measurements, Surf. Sci., 62(1977), No.1, p.267.CrossRefGoogle Scholar
  6. [6]
    F.R. de Boer, R. Boom, W.C.M. Mattens, et al., Cohesion in Metals, North-Holland, Amsterdam, 1988, p.53.Google Scholar
  7. [7]
    V.K. Kumikov and Kh.B. Khokonov, On the measurement of surface free energy and surface tension of solid metals, J. Appl. Phys., 54(1983), No.3, p.1346.CrossRefGoogle Scholar
  8. [8]
    I. Galanakis, N. Papanikolaou, and P.H. Dederichs, Applicability of the broken-bond rule to the surface energy of the fcc metals, Surf. Sci., 511(2002), No.1–3, p.1.CrossRefGoogle Scholar
  9. [9]
    L. Vitos, A.V. Ruban, H.L. Skriver, and J. Kollár, The surface energy of metals, Surf. Sci., 411(1998), No.1–2, p.186.CrossRefGoogle Scholar
  10. [10]
    M. Methfessel, D. Hennig, and M. Scheffler, Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals, Phys. Rev. B, 46(1992), No.8, p.4816.CrossRefGoogle Scholar
  11. [11]
    H.L. Skriver and N.M. Rosengaard, Surface energy and work function of elemental metals, Phys. Rev. B, 46(1992), No.11, p.7157.CrossRefGoogle Scholar
  12. [12]
    J. Kollár, L. Vitos, and H.L. Skriver, Surface energy and work function of the light actinides, Phys. Rev. B, 49(1994), No.16, p.11288.CrossRefGoogle Scholar
  13. [13]
    P. Błoński and A. Kiejna, Calculation of surface properties of bcc iron, Vacuum, 74(2004), No.2, p.179.CrossRefGoogle Scholar
  14. [14]
    M.J.S. Spencer, A. Hung, I.K. Snook, and I. Yarovsky, Density functional theory study of the relaxation and energy of iron surfaces, Surf. Sci., 513(2002), No.2, p.389.CrossRefGoogle Scholar
  15. [15]
    J.M. Zhang, D.D. Wang, and K.W. Xu, Calculation of the surface energy of bcc transition metals by using the second nearest-neighbor modified embedded atom method, Appl. Surf. Sci., 252(2006), No.23, p.8217.CrossRefGoogle Scholar
  16. [16]
    K. Kokko, P.T. Salo, R. Laihia, and K. Mansikka, First-principles calculations for work function and surface energy of thin lithium films, Surf. Sci., 348(1996), No.1–2, p.168.CrossRefGoogle Scholar
  17. [17]
    M.J. Mehl and D.A. Papaconstantopoulos, Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals, Phys. Rev. B, 54(1996), No.7, p.4519.CrossRefGoogle Scholar
  18. [18]
    C. Barreteau, D. Spanjaard, and M.C. Desjonquères, Electronic structure and energetics of transition metal surfaces and clusters from a new spd tight-binding method, Surf. Sci., 433(1999), p.751.CrossRefGoogle Scholar
  19. [19]
    S.M. Foiles, M.I. Baskes, and M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B, 33(1986), No.12, p.7983.CrossRefGoogle Scholar
  20. [20]
    M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B, 46(1992), No.5, p.2727.CrossRefGoogle Scholar
  21. [21]
    P. van Beurden and G.J. Kramer, Parametrization of modified embedded-atom-method potentials for Rh, Pd, Ir, and Pt based on density functional theory calculations, with applications to surface properties, Phys. Rev. B, 63(2001), No.16, art.No.165106.Google Scholar
  22. [22]
    D. Wolf, Correlation between energy, surface tension and structure of free surfaces in fcc metals, Surf. Sci., 226(1990), No.3, p.389.CrossRefGoogle Scholar
  23. [23]
    G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis, Simple N-body potentials for the noble metals and nickel, Philos. Mag. A, 56(1987), No.6, p.753.CrossRefGoogle Scholar
  24. [24]
    A.M. Rodríguez, G. Bozzolo, and J. Ferrante, Multilayer relaxation and surface energies of fcc and bcc metals using equivalent crystal theory, Surf. Sci., 289(1993), No.1-2, p.100.CrossRefGoogle Scholar
  25. [25]
    B.Q. Fu, W. Liu, and Z.L. Li, Calculation of the surface energy of bcc-metals with the empirical electron theory, Appl. Surf. Sci., 255(2009), No.20, p.8511.CrossRefGoogle Scholar
  26. [26]
    B.Q. Fu, W. Liu, and Z.L. Li, Calculation of the surface energy of hcp-metals with the empirical electron theory, Appl. Surf. Sci., 255(2009), No.23, p.9348.CrossRefGoogle Scholar
  27. [27]
    B.Q. Fu, W. Liu, and Z.L. Li, Calculation of the surface en ergy of fcc-metals with the empirical electron surface model, Appl. Surf. Sci., 256(2010), No.22, p.6899.CrossRefGoogle Scholar
  28. [28]
    B.Q. Fu, W. Liu, and Z.L. Li, Surface energy calculation of alkali metals with the empirical electron surface model, Mater. Chem. Phys., 123(2010), No.2–3, p.658.CrossRefGoogle Scholar
  29. [29]
    R.L. Zhang, The Empirical Electron Theory in Solids and Molecules, Jinlin Science and Technology Press, Changchun, 1993, p.35, 475.Google Scholar
  30. [30]
    R.H. Yu, The empirical electron theory in solids and molecules, Chin. Sci. Bull., 23(1978), No.4, p.217.Google Scholar
  31. [31]
    Z.L. Liu, Z.L. Li, and W.D. Liu, Electron Structure of Interface and Their Properties, Science Press, Beijing, 2002, p.23.Google Scholar
  32. [32]
    Z.L. Li, J. Xu, B.Q. Fu, and W. Liu, Influence of aluminium on the valence electron density of the interface between the bond-coat and the thermally grown oxide of thermal barrier coatings, Solid State Sci., 10(2008), No.10, p.1434.CrossRefGoogle Scholar
  33. [33]
    Z.L. Li, Q. Huang, Y.Q. Wu, and Z.F. Li, Application of the C-Me segregating theory in solid alloys to ceramics, Sci. China Ser. E, 50(2007), No.4, p.462.CrossRefGoogle Scholar
  34. [34]
    Z.L. Li, H.B. Xu, and S.K. Gong, Interface conjunction factors of thermal barrier coatings and the relationship between factors and composition, Sci. China Ser. E, 46(2003), No.3, p.234.CrossRefGoogle Scholar
  35. [35]
    W.D. Xu, R.L. Zhang, and R.H. Yu, Calculations for crystal cohesive energy of transition metal compound, Sci. China Ser. A, 32(1989), No.3, p.351.Google Scholar
  36. [36]
    J.M. Zhang, F. Ma, and K.W. Xu, Calculation of the surface energy of FCC metals with modified embedded-atom method, Appl. Surf. Sci., 229(2004), No.1–4, p.34.CrossRefGoogle Scholar
  37. [37]
    T.M. Trimble and R.C. Cammarata, Many-body effects on surface stress, surface energy and surface relaxation of fcc metals, Surf. Sci., 602(2008), No.14, p.2339.CrossRefGoogle Scholar
  38. [38]
    N. Takeuchi, C.T. Chan, and K.M. Ho, Au(111): a theoretical study of the surface reconstruction and the surface electronic structure, Phys. Rev. B, 43(1991), No.17, p.13899.CrossRefGoogle Scholar
  39. [39]
    Ž. Crljen, D. Šokčević, R. Brako, and P. Lazić, DFT calculations of (111) surfaces of Au, Cu, and Pt: stability and reconstruction, Vacuum, 71(2003), No.1–2, p.101.CrossRefGoogle Scholar
  40. [40]
    F.R. Boer, R. Boom, W.C.M. Mattens, et al., Cohesion in Metals, North-Holland, Amsterdam, 1988, p.58.Google Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Laboratory of Advanced Materials, Department of Material Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations