Comparative study of oxidation ability between boron-doped diamond (BDD) and lead oxide (PbO2) electrodes

  • Jun-jun Wei
  • Xiu-ping Zhu
  • Fan-xiu Lü
  • Jin-ren Ni


The electrochemical oxidation capabilities of two high-performance electrodes, the boron-doped diamond film on Ti (Ti/BDD) and the lead oxide film on Ti (Ti/PbO2), were discussed. Hydroxyl radicals (·HO) generated on the electrode surface were detected by using p-nitrosodimethylaniline (RNO) as the trapping reagent. Electrochemical oxidation measurements, including the chemical oxygen demand (COD) removal and the current efficiency (CE), were carried out via the degradation of p-nitrophenol (PNP) under the galvanostatic condition. The results indicate that an indirect reaction, which is attributed to free hydroxyl radicals with high activation, conducts on the Ti/BDD electrode, while the absorbed hydroxyl radicals generated at the Ti/PbO2 surface results in low degradation efficiency. Due to quick mineralization which combusts PNP to CO2 and H2O absolutely by the active hydroxyl radical directly, the CE obtained on the Ti/BDD electrode is much higher than that on the Ti/PbO2 electrode, notwithstanding the number of hydroxyl radicals produced on PbO2 is higher than that on the BDD surface.


thin films diamond films lead oxide born doping hydroxyl radicals chemical oxygen demand (COD) oxidation 


  1. [1]
    M. Hupert, A. Muck, J. Wang, et al., Conductive diamond thin-films in electrochemistry, Diamond Relat. Mater., 12(2003), No.10–11, p.1940.CrossRefGoogle Scholar
  2. [2]
    J. Iniesta, P.A. Michaud, M. Panizza, et al., Electrochemical oxidation of phenol at boron-doped diamond electrode, Electrochim. Acta, 46(2001), No.23, p.3573.CrossRefGoogle Scholar
  3. [3]
    X.M. Chen, G.H. Chen, F.R. Gao, and P.L. Yue, High-performance Ti/BDD electrodes for pollutant oxidation, Environ. Sci. Technol., 37(2003), No.21, p.5021.CrossRefGoogle Scholar
  4. [4]
    M.H. Zhou, Q.Z. Dai, L.C. Lei, et al., Long life modified lead dioxide anode for organic wastewater treatment: Electrochemical characteristics and degradation mechanism, Environ. Sci. Technol., 39(2005), No.1, p.363.CrossRefGoogle Scholar
  5. [5]
    C. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment, Electrochim. Acta, 39(1994), No.11–12, p.1857.CrossRefGoogle Scholar
  6. [6]
    S. Abaci, U. Tamer, K. Pekmez, and A. Yildiz, Performance of different crystal structures of PbO2 on electrochemical degradation of phenol in aqueous solution, Appl. Surf. Sci., 240(2005), No.1–4, p.112.CrossRefGoogle Scholar
  7. [7]
    I. Tröster, M. Fryda, D. Ferrmann, et al., Electrochemical advanced oxidation process for water treatment using Dia-Chem® electrodes, Diamond Relat. Mater., 11(2002), No.3–6, p.640.CrossRefGoogle Scholar
  8. [8]
    Y. Liu and H.L. Liu, Comparative studies on the electrocatalytic properties of modified PbO2 anodes, Electrochim. Acta, 53(2008), No.16, p.5077.CrossRefGoogle Scholar
  9. [9]
    V.L. Gemini, A. Gallego, V.M. de Oliveira, et al., Biodegradation and detoxification of p-nitrophenol by Rhodococcus wratislaviensis, Int. Biodeterior. Biodegrad., 55(2005), No.2, p.103.CrossRefGoogle Scholar
  10. [10]
    J.T. Kong, S.Y. Shi, L.C. Kong, et al., Preparation and characterization of PbO2 electrodes doped with different rare earth oxides, Electrochim. Acta, 53(2007), No.4, p.2048.CrossRefGoogle Scholar
  11. [11]
    X.P. Zhu, S.Y. Shi, J.J. Wei, et al., Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode, Environ. Sci. Technol., 41(2007), No.18, p.6541.CrossRefGoogle Scholar
  12. [12]
    K. Honda, T.N. Rao, D.A. Tryk, et al., Electrochemical characterization of the nanoporous honeycomb diamond electrode as an electrical double-layer capacitor, J. Electrochem. Soc., 147(2000), No.2, p.659.CrossRefGoogle Scholar
  13. [13]
    Q.H. Fan, J. Grácio, and E. Pereira, Residual stresses in chemical vapour deposited diamond films, Diamond Relat. Mater., 9(2000), No.9, p.1739.CrossRefGoogle Scholar
  14. [14]
    P.C. Ricci, A. Anedda, C.M. Carbonaro, F. Clemente, and R. Corpino, Electrochemically induced surface modifications in boron-doped diamond films: a Raman spectroscopy study, Thin Solid Films, 482(2005), No.1–2, p.311.CrossRefGoogle Scholar
  15. [15]
    X.M. Chen and G.H. Chen, Anodic oxidation of Orange II on Ti/BDD electrode: Variable effects, Sep. Purif. Technol., 48(2006), No.1, p.45.CrossRefGoogle Scholar
  16. [16]
    M.H.P. Santane, L.A.D. Faria, and J.F.C. Boodts, Electrochemical characterisation and oxygen evolution at a heavily boron doped diamond electrode, Electrochim. Acta, 50(2005), No.10, p.2017.CrossRefGoogle Scholar
  17. [17]
    X.M. Chen, F.R. Gao, and G.H. Chen, Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation, J. Appl. Electrochem., 35(2005), No.2, p.185.CrossRefGoogle Scholar
  18. [18]
    M. Panizza and G. Cerisola, Influence of anode material on the electrochemical oxidation of 2-naphthol: Part 1. Cyclic voltammetry and potential step experiments, Electrochim. Acta, 48(2003), No.23, p.3491.CrossRefGoogle Scholar
  19. [19]
    X.P. Zhu, M.P. Tong, S.Y. Shi, H.Z. Zhou, and J.R. Ni, Essential explanation of the strong mineralization performance of boron-doped diamond electrodes, Environ. Sci. Technol., 42(2008), No.13, p.4914.CrossRefGoogle Scholar
  20. [20]
    M. Panizza, A. Kapalka, and C. Comninellis, Oxidation of organic pollutants on BDD anodes using modulated current electrolysis, Electrochim. Acta, 53(2008), No.5, p.2289.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jun-jun Wei
    • 1
  • Xiu-ping Zhu
    • 1
  • Fan-xiu Lü
    • 2
  • Jin-ren Ni
    • 1
  1. 1.Department of Environmental EngineeringPeking UniversityBeijingChina
  2. 2.Department of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations