Preparation and performance of dye-sensitized solar cells based on ZnO-modified TiO2 electrodes

  • Sheng-jun Li
  • Yuan Lin
  • Wei-wei Tan
  • Jing-bo Zhang
  • Xiao-wen Zhou
  • Jin-mao Chen
  • Zeng Chen


The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (V OC) and fill factor (ff) of the cells were improved significantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and flat band potential (V fb) were investigated. It is found that the interface charge recombination impedance increases and V fb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.


dye-sensitized solar cells TiO2 electrode modification photoelectrochemical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film, Nature, 353(1991), p.737.CrossRefGoogle Scholar
  2. [2]
    C.J. Barbé, F. Arendse, P. Comte, et al., Nanocrystalline titanium oxide electrodes for photovoltaic applications, J. Am. Ceram. Soc., 80(1997), p.3157.CrossRefGoogle Scholar
  3. [3]
    M. Grätzel, Photoelectrochemical cells, Nature, 414(2001), p.338.CrossRefPubMedADSGoogle Scholar
  4. [4]
    J. Yamamoto, A. Tan, R. Shiratsuchi, et al., A 4% efficient dye-sensitized solar cell fabricated from cathodically electrosynthesized composite titania films, Adv. Mater., 15(2003), p.1823.CrossRefGoogle Scholar
  5. [5]
    W. Kubo, T. Kitamura, K. Hanabusa, et al., Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chem. Commun., (2002), p.374.Google Scholar
  6. [6]
    K. Tennakone, G.R.R.A. Kumara, I.R.M. Kottegoda, et al., An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc, Chem. Commun., 1999, No.1, p.15.Google Scholar
  7. [7]
    X. Sheng, Y. Zhao, J. Zhai, et al., Electro-hydrodynamic fabrication of ZnO-based dye sensitized solar cells, Appl. Phys. A, 87(2007), p.715.CrossRefADSGoogle Scholar
  8. [8]
    N.G. Park, M.G. Kang, K.M. Kim, et al., Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: ZnO type shell on SnO2 and TiO2 cores, Langmuir, 20(2004), p.4246.CrossRefPubMedGoogle Scholar
  9. [9]
    E. Palomares, J.N. Clifford, S.A. Haque, et al., Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, J. Am. Chem. Soc., 125(2003), p.475.CrossRefPubMedGoogle Scholar
  10. [10]
    J. Van de Lagemaat, N.G. Park, and A.J. Frank, Influence of electrical potential distribution charge transport and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques, J. Phys. Chem. B, 104(2000), p.2044.CrossRefGoogle Scholar
  11. [11]
    S.G. Chen, S. Chappel, Y. Diamant, et al., Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells, Chem. Mater., 13(2001), p.4629.CrossRefGoogle Scholar
  12. [12]
    H.S. Jung, J.K. Lee, and M. Nastasi, Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells, Langmuir, 21(2005), p.10332.CrossRefPubMedGoogle Scholar
  13. [13]
    X.T. Zhang, I. Sutanto, T. Taguchi, et al., Al2O3-coated nanoporous TiO2 electrode for solid-state dye-sensitized solar cell, Sol. Energy. Mater. Sol. Cells, 80(2003), p.315.CrossRefGoogle Scholar
  14. [14]
    Z.S. Wang, M. Yanagida, K. Sayama, et al., Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: Improvement of electron lifetime and efficiency, Chem. Mater., 18(2006), p.2912.CrossRefGoogle Scholar
  15. [15]
    S.S. Kim, J.H. Yum, and Y.E. Sung, Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles, J. Photochem. Photobiol. A, 171(2005), p.269.CrossRefGoogle Scholar
  16. [16]
    K.E. Kim, S.R. Jang, J. Park, et al., Enhancement in the performance of dye-sensitized solar cells containing ZnO-covered TiO2 electrodes prepared by thermal chemical vapor deposition, Sol. Energy. Mater. Sol. Cells, 91(2007), p.366.CrossRefGoogle Scholar
  17. [17]
    S.J. Roh, R.S. Mane, S.K. Min, et al., Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells, Appl. Phys. Lett., 89(2006), Art. No.253512.Google Scholar
  18. [18]
    M.K. Nazeeruddin, A. Kay, I. Rodicio, et al., Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) charge transfer sensitizers (X=Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc., 115(1993), p.6382.CrossRefGoogle Scholar
  19. [19]
    M. Wang, Q.L. Zhang, Y.X. Weng, et al., Investigation of mechanisms of enhanced open-circuit photovoltage of dye-sensitized solar cells based the electrolyte containing 1-hexyl-3-methylimidazolium iodide, Chin. Phys. Lett., 23(2006), p.724.zbMATHCrossRefADSGoogle Scholar
  20. [20]
    G. Redmond and D. Fitzmaurice, Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in nonaqueous solvents, J. Phys. Chem., 97(1993), p.1426.CrossRefGoogle Scholar
  21. [21]
    T. Hoshikawa, R. Kikuchi, and K.J. Eguchi, Impedance analysis for dye-sensitized solar cells with a reference electrode, Electroanal. Chem., 588(2006), p.59.CrossRefGoogle Scholar
  22. [22]
    N. Koide, A. Islam, Y. Chiba, et al., Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit, J. Photochem. Photobiol. A, 182(2006), p.296.CrossRefGoogle Scholar
  23. [23]
    G. Schlichthörl, S.Y. Huang, J. Sprague, et al., Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy, J. Phys. Chem. B, 101(1997), p.8141.CrossRefGoogle Scholar
  24. [24]
    L. Dloczik, O. IIeperuma, I. Lauermann, et al., Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy, J. Phys. Chem. B, 101(1997), p.10281.CrossRefGoogle Scholar
  25. [25]
    A.L. Linsebigler, G. Lu, and J.T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev., 95(1995), p.735.CrossRefGoogle Scholar
  26. [26]
    X. Yin, H. Zhao, L.P. Chen, et al., The effects of pyridine derivative additives on interface processes at nanocrystalline TiO2 thin film in dye-sensitized solar cells, Surf. Interface Anal., 39(2007), p.809.CrossRefGoogle Scholar
  27. [27]
    Y. Liu, A. Hagfeldt, X.R. Xiao, et al., Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell, Sol. Energy. Mater. Sol. Cells, 55(1998), p.267.CrossRefGoogle Scholar
  28. [28]
    D.F. Watson and G.J. Meyer, Cation effects in nanocrystalline solar cells, Coord. Chem. Rev., 248(2004), p.1391.CrossRefGoogle Scholar

Copyright information

© Journal Publishing Center of University of Science and Technology Beijing and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Sheng-jun Li
    • 1
    • 2
  • Yuan Lin
    • 2
  • Wei-wei Tan
    • 2
  • Jing-bo Zhang
    • 2
  • Xiao-wen Zhou
    • 2
  • Jin-mao Chen
    • 2
  • Zeng Chen
    • 1
  1. 1.College of Physics and ElectricsHe’nan UniversityKaifengChina
  2. 2.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations