Revue de médecine périnatale

, Volume 9, Issue 3, pp 146–156 | Cite as

État des connaissances sur les contaminants dans le lait maternel

Mise Au Point / Update
  • 21 Downloads

Résumé

Une exposition anténatale est souvent à l’origine des effets indésirables des xénobiotiques. La femme allaitante et l’enfant allaité sont une population cible à risque. Les données publiées ont donné lieu à une liste de 17 polluants de l’environnement susceptibles de se retrouver dans le lait maternel et a permis d’établir une classification du risque en cas d’allaitement maternel. Ces données sont parfois contradictoires. À ce jour, l’allaitement maternel doit être favorisé malgré un environnement pollué et le risque de contamination car il apporte en plus de sa qualité nutritionnelle unique, un effet « protecteur » sur l’enfant via ses propriétés biologiques spécifiques. En revanche, il est essentiel de conseiller la population et surtout les sujets à risque tels que les femmes enceintes et allaitantes, sur leur alimentation et leur environnement proche. Ceci devrait être complété par une politique de santé publique active visant à limiter l’émission de xénobiotiques dans l’environnement et à une formation des professionnels sur le sujet.

Mots clés

Environnement Santé Xénobiotiques Polluants organiques persistants Métaux lourds Allaitement maternel 

Current knowledge on contaminants in breast milk

Abstract

Antenatal exposition could produce xenobiotic side-effects on lactating women and breastfeeding children, they are a vulnerable target about these risks in a high susceptibility window. Sparse and contradictory data are available for health professional and a list could describe 17 pollutants classified at risk during breastfeeding. Lactation must be encouraged although pollution still exists to its protecting effects on breastfed children against infections and other diseases. Still nowadays, right and well balanced public health advices are needed about nutrition with public health policies and laws to reduce contaminant pollutant productions and emissions.

Keywords

Environment Health Xenobiotic Persistent organic pollutants Heavy metals Breastfeeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Mosca F, Gianni ML (2017) Human milk: composition and health benefits. Pediatr Med Chir 39:155CrossRefPubMedGoogle Scholar
  2. 2.
    Lehmann GM, Verner MA, Luukinen B, et al (2014) Improving the risk assessment of lipophilic persistent environmental chemicals in breast milk. Crit RevToxicol 44:600–17Google Scholar
  3. 3.
    Landrigan PJ, Kimmel CA, Correa A, et al (2004) Children’s health and the environment: public health issues and challenges for risk assessment. Environ Health Perspect 112:257–65CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Salanave B, de Launay C, Boudet-Berquier J, et al (2016) Alimentation des nourrissons pendant leur première année de vie. Résultats de l’étude Epifane, 2012-2013. http://invs.santepubliquefrance.fr/Publications-et-outils/Rapports-et-syntheses/Maladies-chroniques-et-traumatismes/2016/Alimentation-des-nourrissons-pendant-leur-premiere-annee-de-vieGoogle Scholar
  5. 5.
    Étude de l’Alimentation Totale Infantile (2016) Rapport d’expertise collective. Anses, Maison Alfort p 1-96Google Scholar
  6. 6.
    Agrell C, ter Schure AF, Sveder J, et al (2004) Polybrominateddiphenylethers (PBDEs) at a solid waste incineration plant. Atmospheric Environment 38:5139–48CrossRefGoogle Scholar
  7. 7.
    Anderson HA, Wolff MS (2000) Environmental contaminants in human milk. J Expo Anal Environ Epidemiol 200:755–60CrossRefGoogle Scholar
  8. 8.
    Trnovec T, Jusko TA, Šovčíková E, et al (2013) Relative Effect Potency Estimates of Dioxin-like Activity for Dioxins, Furans, and Dioxin-like PCBs in Adults Based on Two Thyroid Outcomes, Environ Health Perspect 121:886–92CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Langer P (2010) The impacts of organochlorines and other persistent pollutants on thyroid and metabolic health. Front Neuroendocrinol 31:497–518CrossRefPubMedGoogle Scholar
  10. 10.
    Adamo C, Antignac JP, Auger J, et al (2011) Expertise collective INSERM. Reproduction et Environnement. Paris: Inserm, 713 pGoogle Scholar
  11. 11.
    Fang J, Nyberg E, Bignert A, et al (2013) Temporal trends of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls in mothers’ milk from Sweden, 1972–2011. Environ Int 60:224–31CrossRefPubMedGoogle Scholar
  12. 12.
    Wittsiepe J, Fürst P, Schrey P, et al (2007) PCDD/F and dioxinlike PCB in human blood and milk from German mothers. Chemosphere 67:S286–94CrossRefPubMedGoogle Scholar
  13. 13.
    Todaka I, Hori K, Abe Y, et al (2010) Relationship between the concentrations of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls in maternal blood and those in breast milk Chemosphere 78:185–92PubMedGoogle Scholar
  14. 14.
    Fernández-González R, Yebra-Pimentel I, Martínez-Carballo E, et al (2015) Critical Review about Human Exposure to Polychlorinated Dibenzo-p-Dioxins (PCDDs), Polychlorinated Dibenzofurans (PCDFs) and Polychlorinated Biphenyls (PCBs) through Foods. Crit Rev Food Sci Nutr 55:1590–617CrossRefPubMedGoogle Scholar
  15. 15.
    2000) Étude sur les dioxines et les furanes dans le lait maternel en France http://invs.santepubliquefrance.fr/publications/dioxines/index.htmlGoogle Scholar
  16. 16.
    Lakind JS, Berlin CM, Naiman DQ, et al (2001) Infant exposure to chemicals in breast milk in the United States: what we need to learn from a breast milk monitoring program. Environ Health Perspect 109:75–88CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Milbrath MO, Wenger Y, Chang CW, et al (2009) Apparent halflives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environ Health Perspect 117:417–25CrossRefPubMedGoogle Scholar
  18. 18.
    Focant JF, Fréry N, Bidondo ML, et al (2013) Levels of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls in human milk from different regions of France. Sci Total Environ 452:155–62CrossRefPubMedGoogle Scholar
  19. 19.
    Chovancová J, Čonka K, Kočan A, Sejáková ZS (2009) PCDD, PCDF, PCB and PBDE concentrations in breast milk of mothers residing in selected areas of Slovakia. Chemosphere 75:1236–42CrossRefGoogle Scholar
  20. 20.
    Li J, Zhang L, Wu Y, et al (2009) A national survey of polychlorinated dioxins, furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in human milk in China. Chemosphere 75:1236–42CrossRefPubMedGoogle Scholar
  21. 21.
    Boersma ER, Lanting CL (2000) Environmental exposure to polychlorinated biphenyls (PCBs) and dioxins. Consequences for long term neurological and cognitive development of the child lactation. Adv Exp Med Biol 478:271–87Google Scholar
  22. 22.
    Tai PT, Nishijo M, Anh NTN, et al (2013) Dioxin exposure in breast milk and infant neurodevelopment in Vietnam. Occup Environ Med 70:656–62CrossRefPubMedGoogle Scholar
  23. 23.
    Lignell S, Aune M, Darnerud PO, et al (2016) Maternal body burdens of PCDD/Fs and PBDEs are associated with maternal serum levels of thyroid hormones in early pregnancy: a crosssectional study. Environ Health 26:15–55Google Scholar
  24. 24.
    Van den Berg M, Kypke K, Kotz A, et al (2017) WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and benefit-risk evaluation of breastfeeding. Arch Toxicol 91:83–96CrossRefPubMedGoogle Scholar
  25. 25.
    Guéguen M, Amiard JC, Arnich N, et al (2011) Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts. Rev Environ ContamToxicol 213:55–111Google Scholar
  26. 26.
    Järup L (2003) Hazards of heavy metal contamination. Med Bull Br 68:167–82CrossRefGoogle Scholar
  27. 27.
    Marles RJ, Barrett ML, Low DT, et al (2011) United States pharmacopeia safety evaluation of spirulina. Crit Rev Food Sci Nutr 51:593–604CrossRefPubMedGoogle Scholar
  28. 28.
    Gaxiola-Robles R, Labrada-Martagón V, Celis de la Rosa Ade J, et al (2014) Interaction between mercury (Hg), arsenic (As) and selenium (Se) affects the activity of glutathione S-transferase in breast milk; possible relationship with fish and selfish intake. Nutr Hosp 30:436–46PubMedGoogle Scholar
  29. 29.
    Criswell R, Lenters V, Mandal S, et al (2017) Persistent Environmental Toxicants in Breast Milk and Rapid Infant Growth. Ann Nutr Metab 70:210–6CrossRefPubMedGoogle Scholar
  30. 30.
    Ettinger AS, Téllez-Rojo MM, Amarasiriwardena C, et al (2006) Influence of maternal bone lead burden and calcium intake on levels of lead in breast milk over the course of lactation. Am J Epidemiol 163:48–56CrossRefPubMedGoogle Scholar
  31. 31.
    D’Ilio S, Petrucci F, D’Amato M, et al (2008) Method validation for determination of arsenic, cadmium, chromium and lead in milk by means of dynamic reaction cell inductively coupled plasma mass spectrometry. Anal Chim Acta 624:59–67CrossRefPubMedGoogle Scholar
  32. 32.
    Chao HH, Guo CH, Huang CB, et al (2014) Arsenic, cadmium, lead, and aluminium concentrations in human milk at early stages of lactation. Pediatr Neonatol 55:127–34CrossRefPubMedGoogle Scholar
  33. 33.
    Dorea JG (2004) Mercury and lead during breast-feeding. Br J Nutr 92:21–40CrossRefPubMedGoogle Scholar
  34. 34.
    Becker G, Ryan-Fogarty Y (2016) Reliance on pumped mother’s milk has an environmental impact. Children 3:14CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Moneim IA, Shamy MY, el-Gazzar RM, et al (1999) Autoantibodies to neurofilaments (NF), glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) in workers exposed to lead. J Egypt Public Health Assoc 74:121–38PubMedGoogle Scholar
  36. 36.
    García-Esquinas E, Pérez-Gómez B, Fernández MA, et al (2011) Mercury, lead and cadmium in human milk in relation to diet, lifestyle habits and sociodemographic variables in Madrid (Spain). Chemosphere 85:268–76CrossRefPubMedGoogle Scholar
  37. 37.
    Gürbay A, Charehsaz M, Eken A (2012) Toxic metals in breast milk samples from Ankara, Turkey: assessment of lead, cadmium, nickel, and arsenic levels. Biol Trace Elem Res 149:117–22CrossRefPubMedGoogle Scholar
  38. 38.
    Cernichiari E, Brewer R, Myers GJ, et al (1995) Monitoring methylmercury during pregnancy: maternal hair predicts fetal brain exposure. Neuro Toxicology 16:705–10Google Scholar
  39. 39.
    Al-Saleh I, Nester M, Abduljabbar M, et al (2016) Mercury (Hg) exposure and its effects on Saudi breastfed infant’s neurodevelopment. Int J Hyg Environ Health 219:129–41CrossRefPubMedGoogle Scholar
  40. 40.
    Miklavčič A, Cuderman P, Mazej D, et al (2011) Biomarkers of low-level mercury exposure through fish consumption in pregnant and lactating Slovenian women. Environ Res 111: 1201–7CrossRefPubMedGoogle Scholar
  41. 41.
    Drasch G, Aigner S, Roider G, et al (1998) Mercury in human colostrum and early breast milk. Its dependance on dental amalgam and other factors. J Trace Elem Med Biol 12:23–7CrossRefGoogle Scholar
  42. 42.
    Drexler H, Schaller KH (1998) The mercury concentration in breast milk resulting from amalgam fillings and dietary habits. Environ Res 77:124–9CrossRefPubMedGoogle Scholar
  43. 43.
    Yalçin SS, Yurdakök K, Yalçin S, et al (2010) Maternal and environmental determinants of breast-milk mercury concentrations. Turk J Pediatr 52:1–9PubMedGoogle Scholar
  44. 44.
    Needham LL, Grandjean P, Heinzow B, et al (2011). Partition of environmental chemicals between maternal and fetal blood and tissues. Environ SciTechnol 45:1121–6CrossRefGoogle Scholar
  45. 45.
    Li PJ, Sheng YZ, Wang QY, et al (2000) Transfer of lead via placenta and breast milk in human. Biomed Environ Sci 13:85–9PubMedGoogle Scholar
  46. 46.
    Manton WI, Angle CR, Stanek KL, et al (2003) Release of lead from bone in pregnancy an lactation. Environ Res 92:139–51CrossRefPubMedGoogle Scholar
  47. 47.
    Namihira D, Saldivar L, Pustilnik N, et al (1993) Lead in human blood and milk. J Toxicol Environ Health 38:225–32CrossRefPubMedGoogle Scholar
  48. 48.
    Baum C, Shannon M (1995) Lead poisoned lactating women have insignificant lead in breast milk. J ClinToxicol 13: 540–1Google Scholar
  49. 49.
    Gelberg KH, Depersis R (2009) Lead exposure among target shooters. Arch Environ Occup Health. Summer 64:115–20CrossRefGoogle Scholar
  50. 50.
    Guidelines for the identification and management of lead exposure in pregnant and lactating women (2010) US department of Health and human services, Atlanta https://www.cdc.gov/nceh/lead/publications/leadandpregnancy2010.pdfGoogle Scholar
  51. 51.
    Grandjean P, Weihe P, Needham LL, et al (1995) Relation of a seafood diet to mercury, selenium, arsenic, and polychlorinated biphenyl and other organochlorine concentrations in human milk. Environ Res 71:29–38CrossRefPubMedGoogle Scholar
  52. 52.
    Sternowsky HJ, Moser B, Szadkowsky D (2002) Arsenic in breast milk during the first 3 months of lactation. Int J Hyg Environ Health 205:405–9CrossRefPubMedGoogle Scholar
  53. 53.
    Réseau canadien pour la santé des femmes (2004}) L’allaitement maternel dans un environnement contaminé. http://www.cwhn.ca/fr/node/3996Google Scholar
  54. 54.
    Fromme H, Gruber L, Seckin E, et al (2011) Phthalates and their metabolites in breast milk—results from the Bavarian Monitoring of Breast Milk (BAMBI). Environ Int 37:715–22CrossRefPubMedGoogle Scholar
  55. 55.
    2011) L’EFSA révise l’évaluation de l’exposition des consommateurs aux glycosides de stéviol. https://www.efsa.europa.eu/fr/press/news/ans110126Google Scholar
  56. 56.
    http://www.e-lactancia.org/Google Scholar

Copyright information

© Lavoisier 2017

Authors and Affiliations

  1. 1.Service de médecine préventiveOrléans MétropoleOrléansFrance
  2. 2.Institut Léonard de VinciCourbevoieFrance
  3. 3.Service de néonatalogiehôpital Necker–Enfants Malades-ParisParisFrance
  4. 4.Sage-femme pharmacologueLilleFrance

Personalised recommendations