Advertisement

Revue de médecine périnatale

, Volume 9, Issue 2, pp 73–80 | Cite as

Malformations et facteurs environnementaux

Mise au Point / Update
  • 23 Downloads

Résumé

La relation entre l’exposition intra-utérine à des agents de l’environnement et la survenue de malformations congénitales a fait l’objet de nombreuses études avec des résultats parfois peu concluants. À ce jour, de nombreuses inconnues subsistent tant sur la proportion de malformations congénitales attribuables aux effets de l’environnement que sur la nature des substances susceptibles d’augmenter le risque de leur survenue. Cet article propose de réaliser un état des connaissances de cette question. Une fois les concepts de malformation, d’environnement, d’effets mutagènes et tératogènes définis, les sources actuelles d’informations utilisées pour les étudier sont recensées (registres de malformations, cohortes Pélagie, ELFE et Sépages, règlement REACH). L’accent est mis sur les critères reconnus comme conditionnant la validité des études qui visent à évaluer les associations, tels que pouvoir disposer d’une bonne définition et d’une bonne mesure des malformations étudiées et des expositions et coexpositions, ainsi que disposer de données biologiques. Un état des lieux est enfin dressé, qui concerne les facteurs physiques et chimiques les plus saillants en matière de risque reprotoxique avéré ou présumé: perturbateurs endocriniens, solvants, polluants atmosphériques, pesticides et champs électromagnétiques.

Mots clés

Malformation Environnement Tératogène Mutagène Exposition intra-utérine 

Malformations and environmental factors

Abstract

The relationship between intrauterine exposure to environmental agents and the occurrence of congenital malformations has been the subject of numerous studies, leading to sometimes inconclusive results. To date, there are still many unknowns about the proportion of congenital malformations attributable to the effects of the environment and the nature of the substances likely to increase their occurrence. This article proposes to assess the current knowledge on this question. Once the concepts of “malformation”, “environment”, “mutagenic and teratogenic effects” have been defined, the article takes a census of the current sources of information used to study them (malformations registries, Pélagie cohorts, ELFE and Sépages cohorts, REACH regulation). An emphasis is placed on the criteria that are recognized as being decisive in the validation of studies aiming at evaluating these associations, such as using correct definitions, using an accurate measure of the malformations studied, as well as the exposure, co-exposure and biological data used. Finally, the article establishes an assessment of the most salient physical and chemical factors, in terms of known or suspected reprotoxic risk: endocrine disruptors, solvents, atmospheric pollutants, pesticides and electromagnetic fields.

Keywords

Malformation Environment Teratogen Mutagen Intrauterine exposure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Brent RL (2004) Environmental causes of human congenital malformations: the pediatrician’s role in dealing with these complex clinical problems caused by a multiplicity of environmental and genetic factors. Pediatrics 113:957–68PubMedGoogle Scholar
  2. 2.
    Friedler G (1996) Paternal exposures: impact on reproductive and developmental outcome. An overview. Pharmacol Biochem Behav 55:691–700CrossRefPubMedGoogle Scholar
  3. 3.
    Mocarelli P, Gerthoux PM, Ferrari E, et al (2000) Paternal concentrations of dioxin and sex ratio of offspring. Lancet 355:1858–63CrossRefPubMedGoogle Scholar
  4. 4.
    Zoeller RT, Bergman A, Becher G, et al (2014) A path forward in the debate over health impacts of endocrine disrupting chemicals. Environmental Health 13:118CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Barouki R (2016) Les perturbateurs endocriniens: 25 ans déjà. Yearbook Santé et Environnement http://www.yearbook-ers.jle. com/download/ers-4324–WQs6Mn8AAQEAAG9@GTUAAAAB- a.pdfGoogle Scholar
  6. 6.
    Braun JM, Kalkbrenner AE, Calafat AM, et al (2011) Variability and predictors of urinary bisphenol a concentrations during pregnancy. Environ Health Perspect 119:131–7CrossRefPubMedGoogle Scholar
  7. 7.
    Ndaw S, Remy A, Jargot D, Robert A (2016) Occupational exposure of cashiers to bisphenol A via thermalpaper: urinary biomonitoring study. Int Arch Occup Environ Health 89:935-46CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hjortebjerg D, Nybo Andersen AM, Garne E, et al (2012) Nonoccupational exposure to paint fumes during pregnancy and risk of congenital anomalies: a cohort study. Environ Health 11:54CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wennborg H, Magnusson LL, Bonde JP, Olsen J (2005) Congenital malformations related to maternal exposure to specific agents in biomedical research laboratories. J Occup Environ Med 47:11–9CrossRefPubMedGoogle Scholar
  10. 10.
    Cordier S, Garlantézec R, Labat L, et al (2012) Exposure during pregnancy to glycol ethers and chlorinated solvents and the risk of congenital malformations. Epidemiology 23:806–12CrossRefPubMedGoogle Scholar
  11. 11.
    Gilboa SM, Mendola P, Olshan AF, et al (2005) Relation between ambient air quality and selected birth defects, seven county study, Texas, 1997–2000. Am J Epidemiol 162:238–52CrossRefPubMedGoogle Scholar
  12. 12.
    Vrijheid M, Martinez D, Manzanares S, et al (2011) Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. Environ Health Perspect 119:598–606CrossRefPubMedGoogle Scholar
  13. 13.
    Agay-Shay K, Friger M, Linn S, et al (2013) Air pollution and congenital heart defects. Environ Res 124:28–34CrossRefPubMedGoogle Scholar
  14. 14.
    Hwang BF, Lee YL, Jaakkola JJK (2015) Air pollution and the risk of cardiac defects: a population-based case-control study. Zhu X (ed). Medicine 94:e1883CrossRefGoogle Scholar
  15. 15.
    Marshall EG, Harris G, Wartenberg D (2010) Oral cleft defects and maternal exposure to ambient air pollutants in New Jersey. Birth Defects Res 88:205–15CrossRefGoogle Scholar
  16. 16.
    Zhou Y, Gilboa SM, Herdt ML, et al (2017) Maternal exposure to ozone and PM2.5 and the prevalence of orofacial clefts in four US states. Environ Res 153:35–40CrossRefPubMedGoogle Scholar
  17. 17.
    Girguis MS, Strickland MJ, Hu X, et al (2016) Maternal exposure to traffic-related air pollution and birth defects in Massachusetts. Environ Res 146:1–9CrossRefPubMedGoogle Scholar
  18. 18.
    Cordier S, Lehébel A, Amar E, et al (2010) Maternal residence near municipal waste incinerators and the risk of urinary tract birth defects. Occup Environ Med 67:493–9CrossRefPubMedGoogle Scholar
  19. 19.
    Inserm (dir.) (2013) Pesticides: effets sur la santé. Rapport. Inserm, Paris, XII-1001 p. (expertise collective). http://hdl.handle.net/10608/4820Google Scholar
  20. 20.
    Rappazzo KM, Warren JL, Meyer RE, et al (2016) Maternal residential exposure to agricultural pesticides and birth defects in a 2003 to 2005 North Carolina birth cohort. Birth Defects Res A Clin Mol Teratol 106:240–9CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rocheleau CM, Romitti PA, Dennis LK (2009) Pesticides and hypospadias: a meta-analysis. J Pediatr Urol 5:17–24CrossRefPubMedGoogle Scholar
  22. 22.
    Chevrier C, Petit C, Limon G, et al (2009) Biomarqueurs urinaires d’exposition aux pesticides des femmes enceintes de la cohorte Pélagie réalisée en Bretagne (2002–2006). BEH, hors sérieGoogle Scholar
  23. 23.
    Andersen HR, Schmidt IM, et al (2008) Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ Health Perspect 116:566–72CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gaspari L, Paris F, Jandel C, et al (2011) Prenatal environmental risk factors for genital anomalies in a population of 1,442 male French newborns: a nested case-control study. Human Reprod 26:3155–62CrossRefGoogle Scholar
  25. 25.
    Lewis RC, Hauser R, Maynard AD, et al (2016) Exposure to power-frequency magnetic fields and the risk of infertility and adverse pregnancy outcomes: update on the human evidence and recommendations for future study designs. J Toxicol Environ Health B Crit Rev 19:29–45CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Blaasaas K, Tynes T, Irgens A, Lie R (2002) Risk of birth defects by parental occupational exposure to 50 Hz electromagnetic fields: a population based study. Occup Environ Med 59:92–7CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Blaasaas KG, Tynes T, Lie RT (2003) Residence near power lines and the risk of birth defects. Epidemiology 14:95–8CrossRefPubMedGoogle Scholar
  28. 28.
    Blaasaas KG, Tynes T, Lie RT (2004) Risk of selected birth defects by maternal residence close to power lines during pregnancy. Occup Environ Med 61:174–6CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Malagoli C, Crespi CM, Rodolfi R, et al (2012) Maternal exposure to magnetic fields from high-voltage power lines and the risk of birth defects. Bioelectromagnetics 33:405–9CrossRefPubMedGoogle Scholar
  30. 30.
    Sudan M, Kheifets L, Arah OA, Olsen J (2013) Cell phone exposures and hearing loss in children in the danish national birth cohort. Paediatr Perinat Epidemiol 27:247–57CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Merhi ZO (2012) Challenging cell phone impact on reproduction: a review. J Assist Reprod Genet 29:293–7CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Lavoisier 2017

Authors and Affiliations

  1. 1.Registre des malformations en Rhône-Alpes (REMERA)LyonFrance

Personalised recommendations