Revue de médecine périnatale

, Volume 4, Issue 2, pp 74–79

Diagnostic prénatal non invasif : de la détermination du sexe fœtal à la détection d’aneuploïdie

Mise au Point / Update
  • 56 Downloads

Résumé

Le diagnostic prénatal permet de détecter des pathologies chez le fœtus in utero. Il requiert très souvent un prélèvement invasif, dont la principale complication est la survenue de fausses couches dans 0,5 à 4 % des cas. La découverte, à la fin des années 1990, d’ADN fœtal circulant libre dans le plasma maternel a permis le développement de techniques de diagnostic prénatal non invasif. La détermination du sexe fœtal et le génotypage RHD (rhésus (D)) font à présent partie des pratiques courantes et permettent de diminuer le nombre de prélèvements invasifs et le nombre de traitements inappropriés. Alors que le diagnostic non invasif des maladies monogéniques est encore à la phase de mise au point, les progrès technologiques récents, notamment concernant le séquençage haut débit, ont rendu possible le diagnostic de trisomie 21 à partir du sang maternel, dont la place reste encore à définir dans la prise en charge des patientes.

Mots clés

Diagnostic prénatal ADN fœtal circulant Sexe fœtal Trisomie 21 Génotypage rhésus 

Non-invasive prenatal diagnosis: from fetal sex determination to aneuploidy detection

Abstract

Prenatal diagnosis aims at detecting in utero fetal diseases. It often requires an invasive fetal sampling, whose main complication is the occurrence of miscarriages in 0.5 to 4% of cases. The discovery of free fetal circulating DNA in maternal plasma in the late 1990s has enabled the development of techniques for non-invasive prenatal diagnosis. Fetal sex determination and RHD genotyping are now part of current practices and help to reduce the number of invasive samplings and inappropriate treatments. While the noninvasive diagnosis of monogenic diseases is still at the stage of development, recent technological advances — including next-generation sequencing—have made possible the diagnosis of trisomy 21 from maternal blood, whose contribution remains yet to be defined in patients’ management.

Keywords

Prenatal diagnosis Fetal circulating DNA Fetal sex Trisomy 21 RHD genotyping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Mujezinovic F, Alfirevic Z (2007) Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Obstet Gynecol 110:687–694PubMedCrossRefGoogle Scholar
  2. 2.
    Bianchi DW, Williams JM, Sullivan LM, et al (1997) PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet 61:822–829PubMedCrossRefGoogle Scholar
  3. 3.
    Chen H, Griffin DK, Jestice K, et al (1998) Evaluating the culture of fetal erythroblasts from maternal blood for non-invasive prenatal diagnosis. Prenat Diagn 18:883–892PubMedCrossRefGoogle Scholar
  4. 4.
    Bianchi DW, Simpson JL, Jackson LG, et al (2002) Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat Diagn 22:609–615PubMedCrossRefGoogle Scholar
  5. 5.
    Bianchi DW, Zickwolf GK, Weil GJ, et al (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 93:705–708PubMedCrossRefGoogle Scholar
  6. 6.
    Lo YM, Corbetta N, Chamberlain PF, et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487PubMedCrossRefGoogle Scholar
  7. 7.
    Alberry M, Maddocks D, Jones M, et al (2007) Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat Diagn 27:415–418PubMedCrossRefGoogle Scholar
  8. 8.
    Flori E, Doray B, Gautier E, et al (2004) Circulating cell-free fetal DNA in maternal serum appears to originate from cyto- and syncytio-trophoblastic cells. Case report. Hum Reprod 19:723–724CrossRefGoogle Scholar
  9. 9.
    Chan KC, Zhang J, Hui AB, et al (2004) Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem 50:88–92PubMedCrossRefGoogle Scholar
  10. 10.
    Birch L, English CA, O’Donoghue K, et al (2005) Accurate and robust quantification of circulating fetal and total DNA in maternal plasma from 5 to 41 weeks of gestation. Clin Chem 51:312–320PubMedCrossRefGoogle Scholar
  11. 11.
    Benachi A, Steffann J, Gautier E, et al (2003) Fetal DNA in maternal serum: does it persist after pregnancy? Hum Genet 113:76–79PubMedGoogle Scholar
  12. 12.
    Lo YM, Zhang J, Leung TN, et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64:218–224PubMedCrossRefGoogle Scholar
  13. 13.
    Lo YM, Tein MS, Lau TK, et al (1998) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62:768–775PubMedCrossRefGoogle Scholar
  14. 14.
    Costa JM, Benachi A, Gautier E, et al (2001) First-trimester fetal sex determination in maternal serum using real-time PCR. Prenat Diagn 21:1070–1074PubMedCrossRefGoogle Scholar
  15. 15.
    Avent ND, Chitty LS (2006) Non-invasive diagnosis of fetal sex; utilisation of free fetal DNA in maternal plasma and ultrasound. Prenat Diagn 26:598–603PubMedCrossRefGoogle Scholar
  16. 16.
    Wright CF, Burton H (2009) The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update 15:139–151PubMedCrossRefGoogle Scholar
  17. 17.
    Costa JM, Benachi A, Gautier E (2002) New strategy for prenatal diagnosis of X-linked disorders. N Engl J Med 346:1502PubMedCrossRefGoogle Scholar
  18. 18.
    Rijnders RJ, van der Schoot CE, Bossers B, et al (2001) Fetal sex determination from maternal plasma in pregnancies at risk for congenital adrenal hyperplasia. Obstet Gynecol 98:374–378PubMedCrossRefGoogle Scholar
  19. 19.
    Nimkarn S, New MI (2010) Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: a paradigm for prenatal diagnosis and treatment. Ann NY Acad Sci 1192:5–11PubMedCrossRefGoogle Scholar
  20. 20.
    Gautier E, Benachi A, Giovangrandi Y, et al (2005) Fetal RhD genotyping by maternal serum analysis: a two-year experience. Am J Obstet Gynecol 192:666–669PubMedCrossRefGoogle Scholar
  21. 21.
    Lo YM, Hjelm NM, Fidler C, et al (1998) Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N Engl J Med 339:1734–1738PubMedCrossRefGoogle Scholar
  22. 22.
    CNGOF (2006) Recommendations for clinical practice. Prevention in maternofetal Rh immunization (December 2005). Gynecol Obstet Fertil 34:360–365CrossRefGoogle Scholar
  23. 23.
    Saito H, Sekizawa A, Morimoto T, et al (2000) Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. Lancet 356:1170PubMedCrossRefGoogle Scholar
  24. 24.
    Chitty LS, Griffin DR, Meaney C, et al (2011) New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma. Ultrasound Obstet Gynecol 37:283–289PubMedCrossRefGoogle Scholar
  25. 25.
    Gonzalez-Gonzalez MC, Trujillo MJ, Rodriguez de Alba M, et al (2003) Huntington disease-unaffected fetus diagnosed from maternal plasma using QF-PCR. Prenat Diagn 23:232–234PubMedCrossRefGoogle Scholar
  26. 26.
    Amicucci P, Gennarelli M, Novelli G, et al (2000) Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin Chem 46:301–302PubMedGoogle Scholar
  27. 27.
    Gonzalez-Gonzalez MC, Garcia-Hoyos M, Trujillo MJ, et al (2002) Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma. Prenat Diagn 22:946–948PubMedCrossRefGoogle Scholar
  28. 28.
    Chiu RW, Lau TK, Leung TN, et al (2002) Prenatal exclusion of beta thalassaemia major by examination of maternal plasma. Lancet 360:998–1000PubMedCrossRefGoogle Scholar
  29. 29.
    Papageorgiou EA, Karagrigoriou A, Tsaliki E, et al (2011) Fetalspecific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med 17:510–513PubMedCrossRefGoogle Scholar
  30. 30.
    Lo YM, Tsui NB, Chiu RW, et al (2007) Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat Med 13:218–223PubMedCrossRefGoogle Scholar
  31. 31.
    Lo YM, Lun FM, Chan KC, et al (2007) Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci USA 104:13116–13121PubMedCrossRefGoogle Scholar
  32. 32.
    Chiu RW, Chan KC, Gao Y, et al (2008) Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci USA 105:20458–20463PubMedCrossRefGoogle Scholar
  33. 33.
    Chiu RW, Sun H, Akolekar R, et al (2010) Maternal plasma DNA analysis with massively parallel sequencing by ligation for noninvasive prenatal diagnosis of trisomy 21. Clin Chem 56:459–463PubMedCrossRefGoogle Scholar
  34. 34.
    Fan HC, Blumenfeld YJ, Chitkara U, et al (2008) Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci USA 105:16266–16271PubMedCrossRefGoogle Scholar
  35. 35.
    Chiu RW, Akolekar R, Zheng YW, et al (2011) Noninvasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ 342:c7401PubMedCrossRefGoogle Scholar
  36. 36.
    Ehrich M, Deciu C, Zwiefelhofer T, et al (2011) Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol 204:205e1–205e11CrossRefGoogle Scholar
  37. 37.
    Palomaki GE, Kloza EM, Lambert-Messerlian GM, et al (2012) DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med 13:913–920CrossRefGoogle Scholar
  38. 38.
    Benn P, Borrell A, Cuckle H, et al (2012) Prenatal detection of down syndrome using massively parallel sequencing (MPS): a rapid response statement from a committee on behalf of the Board of the International Society for Prenatal Diagnosis, 24 October 2011. Prenat Diagn:1–2Google Scholar

Copyright information

© Springer-Verlag France 2012

Authors and Affiliations

  • C. Schluth-Bolard
    • 1
    • 2
  • A. Labalme
    • 1
  • D. Sanlaville
    • 1
    • 2
  1. 1.Service de cytogénétique constitutionnelle, centre de biologie et pathologie Esthospices civils de LyonBronFrance
  2. 2.Inserm U1028, CNRS UMR5292université Claude-Bernard Lyon-I, équipe TIGERLyonFrance

Personalised recommendations