Advertisement

Biomarker Predictors for Immunotherapy Benefit in Breast: Beyond PD-L1

  • Jamaal L. James
  • Justin M. BalkoEmail author
Immuno-oncology (S Tolaney, Section Editor)
  • 35 Downloads
Part of the following topical collections:
  1. Topical Collection on Immuno-oncology

Abstract

Purpose of Review

Immune checkpoint blockade (ICB) has changed the clinical course of multiple cancer types and durable responses have now been observed in breast cancer (BC) patients. Most data suggest that, compared to other subtypes, triple-negative BC (TNBC) patients are more responsive to ICB, and anti-PD-L1 therapy is now approved in PD-L1+ metastatic TNBC, in combination with chemotherapy.

Recent Findings

Nearly 40% of PD-L1+ TNBC patients did not respond to this combination. Thus, additional biomarkers appear to be necessary to more precisely identify potential responders. A comprehensive analysis of the breast tumor microenvironment (TME) and peripheral blood may identify potential biomarkers for a more accurate selection of patients likely to respond to ICB.

Summary

Herein, we summarize key features of the breast TME, and beyond, that may hold predictive power in determining immunotherapy benefit. Incorporation of these features in controlled clinical trials may help further guide personalized care for BC immunotherapy.

Keywords

Breast cancer Biomarkers Programmed death-ligand 1 

Notes

Compliance with Ethics Standards

Conflict of Interest

Justin Balko reports research support from Genentech/Roche, Bristol Myers Squibb, and Incyte Corporation; has received consulting/expert witness fees from Novartis; is an inventor on provisional patents regarding immunotherapy targets and biomarkers in cancer; and has a patent 15/376,276 pending on the use of MHC-I/II to predict response to immunotherapy. Jamaal James declares no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792.  https://doi.org/10.1038/cddis.2015.162.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sun C, Mezzadra R, Schumacher TN. Regulation and Function of the PD-L1 Checkpoint. Immunity. 2018;48(3):434–52.  https://doi.org/10.1016/j.immuni.2018.03.014.CrossRefGoogle Scholar
  3. 3.
    Oyan B, Sonmez O, Yazar A, Teomet M. Comparison of SP142 (Ventana) and SP263 (Ventana) assays to test PD-L1 expression in metastatic cancer patients to be treated with immune checkpoint inhibitors. J Clin Oncol. 2018;36(15).  https://doi.org/10.1200/JCO.2018.36.15_suppl.e24306.CrossRefGoogle Scholar
  4. 4.
    • Scott M, Scorer P, Barker C, Al-Masri H. Comparison of patient populations identified by different PD-L1 assays in in triple-negative breast cancer (TNBC). Ann Oncol. 2019;30. Comparison FDA-approved PD-L1 IHC assays testing predictive accuracy in TNBC. Google Scholar
  5. 5.
    Gadiot J, Hooijkaas AI, Kaiser AD, van Tinteren H, van Boven H, Blank C. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer. 2011;117(10):2192–201.  https://doi.org/10.1002/cncr.25747.CrossRefPubMedGoogle Scholar
  6. 6.
    Hunter KA, Socinski MA, Villaruz LC. PD-L1 Testing in Guiding Patient Selection for PD-1/PD-L1 Inhibitor Therapy in Lung Cancer. Mol Diagn Ther. 2018;22(1):1–10.  https://doi.org/10.1007/s40291-017-0308-6.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    •• Schmid P, Cruz C, Braiteh FS, Eder JP, Tolaney S, Kuter I et al. Atezolizumab in metastatic TNBC (mTNBC): Long-term clinical outcomes and biomarker analyses. Cancer Res. 2017;77.  https://doi.org/10.1158/1538-7445.Am2017-2986. Dose-escalation study evaluating safety, tolerability and pharmokinetics of atezolizumab in metastatic TNBC regardless of PD-L1 expression.
  8. 8.
    •• Dirix LY, Takacs I, Jerusalem G, Nikolinakos P, Arkenau HT, Forero-Torres A, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat. 2018;167(3):671–86.  https://doi.org/10.1007/s10549-017-4537-5. Dose-escalation study testing avelumab activity and the predictive capacity of PD-L1 in metastatic BC patients who resisted standard-of-care treatment. CrossRefPubMedGoogle Scholar
  9. 9.
    •• Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N Engl J Med. 2018;379(22):2108–21.  https://doi.org/10.1056/NEJMoa1809615. Randomized trial testing standard-of-care nab-paclitaxel in combination with atezolizumab in patients with untreated metastatic TNBC. CrossRefPubMedGoogle Scholar
  10. 10.
    Althobiti M, Aleskandarany MA, Joseph C, Toss M, Mongan N, Diez-Rodriguez M, et al. Heterogeneity of tumour-infiltrating lymphocytes in breast cancer and its prognostic significance. Histopathology. 2018;73(6):887–96.  https://doi.org/10.1111/his.13695.CrossRefPubMedGoogle Scholar
  11. 11.
    Dannenfelser R, Nome M, Tahiri A, Ursini-Siegel J, Vollan HKM, Haakensen VD, et al. Data-driven analysis of immune infiltrate in a large cohort of breast cancer and its association with disease progression, ER activity, and genomic complexity. Oncotarget. 2017;8(34):57121–33.  https://doi.org/10.18632/oncotarget.19078.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Varn FS, Mullins DW, Arias-Pulido H, Fiering S, Cheng C. Adaptive immunity programmes in breast cancer. Immunology. 2017;150(1):25–34.  https://doi.org/10.1111/imm.12664.CrossRefPubMedGoogle Scholar
  13. 13.
    Wargo JA, Reuben A, Cooper ZA, Oh KS, Sullivan RJ. Immune Effects of Chemotherapy, Radiation, and Targeted Therapy and Opportunities for Combination With Immunotherapy. Semin Oncol. 2015;42(4):601–16.  https://doi.org/10.1053/j.seminoncol.2015.05.007.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cortet M, Bertaut A, Molinie F, Bara S, Beltjens F, Coutant C, et al. Trends in molecular subtypes of breast cancer: description of incidence rates between 2007 and 2012 from three French registries. BMC Cancer. 2018;18(1):161.  https://doi.org/10.1186/s12885-018-4080-8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Luen S, Virassamy B, Savas P, Salgado R, Loi S. The genomic landscape of breast cancer and its interaction with host immunity. Breast. 2016;29:241–50.  https://doi.org/10.1016/j.breast.2016.07.015.CrossRefPubMedGoogle Scholar
  16. 16.
    Venkatesan S, Rosenthal R, Kanu N, McGranahan N, Bartek J, Quezada SA, et al. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann Oncol. 2018;29(3):563–72.  https://doi.org/10.1093/annonc/mdy003.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Iqbal N, Iqbal N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol Biol Int. 2014;2014:852748.  https://doi.org/10.1155/2014/852748.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Salgado R, Loi S. Tumour infiltrating lymphocytes in breast cancer: increasing clinical relevance. Lancet Oncol. 2018;19(1):3–5.  https://doi.org/10.1016/S1470-2045(17)30905-1.CrossRefPubMedGoogle Scholar
  19. 19.
    Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9.  https://doi.org/10.1038/nature10933.CrossRefPubMedGoogle Scholar
  20. 20.
    Henle AM, Erskine CL, Benson LM, Clynes R, Knutson KL. Enzymatic discovery of a HER-2/neu epitope that generates cross-reactive T cells. J Immunol. 2013;190(1):479–88.  https://doi.org/10.4049/jimmunol.1201264.CrossRefPubMedGoogle Scholar
  21. 21.
    Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101(10):736–50.  https://doi.org/10.1093/jnci/djp082.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929–43.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Yao Y, Dai W. Genomic Instability and Cancer. J Carcinog Mutagen. 2014;5.  https://doi.org/10.4172/2157-2518.1000165.
  24. 24.
    Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2019;30(1):44–56.  https://doi.org/10.1093/annonc/mdy495.CrossRefPubMedGoogle Scholar
  25. 25.
    Buttner R, Longshore JW, Lopez-Rios F, Merkelbach-Bruse S, Normanno N, Rouleau E, et al. Implementing TMB measurement in clinical practice: considerations on assay requirements. ESMO Open. 2019;4(1):e000442.  https://doi.org/10.1136/esmoopen-2018-000442.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, et al. Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci U S A. 2010;107(43):18545–50.  https://doi.org/10.1073/pnas.1010978107.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    • Thomas A, Routh ED, Pullikuth A, Jin G, Su J, Chou JW, et al. Tumor mutational burden is a determinant of immune-mediated survival in breast cancer. Oncoimmunology. 2018;7(10):e1490854.  https://doi.org/10.1080/2162402X.2018.1490854. A study using publicly available datasets to determine the prognostic value of TMB and its relationship with immune cell infiltration and BC subtype. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    • Barroso-Sousa R, Jain E, Kim D, Partridge AH, Cohen O, Wagle N. Determinants of high tumor mutational burden (TMB) and mutational signatures in breast cancer. J Clin Oncol. 2018;36(15).  https://doi.org/10.1200/JCO.2018.36.15_suppl.1010. A study using publicly available datasets to understand relationships between TMB and BC subtype, tumor stage, metastatic site, and mutational patterns. CrossRefGoogle Scholar
  29. 29.
    Alva AS, Mangat PK, Garrett-Mayer E, Halabi S, Alvarez RH, Calfa CJ, et al. Pembrolizumab (P) in patients (pts) with metastatic breast cancer (MBC) with high tumor mutational burden (HTMB): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. J Clin Oncol. 2019;37(suppl):1014.CrossRefGoogle Scholar
  30. 30.
    Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30(3):397–404.  https://doi.org/10.1093/annonc/mdy517.CrossRefPubMedGoogle Scholar
  31. 31.
    Miller A, Asmann Y, Cattaneo L, Braggio E, Keats J, Auclair D, et al. High somatic mutation and neoantigen burden are correlated with decreased progression-free survival in multiple myeloma. Blood Cancer J. 2017;7(9):e612.  https://doi.org/10.1038/bcj.2017.94.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    • Santa-Maria CA, Kato T, Park JH, Kiyotani K, Rademaker A, Shah AN, et al. A pilot study of durvalumab and tremelimumab and immunogenomic dynamics in metastatic breast cancer. Oncotarget. 2018;9(27):18985–96.  https://doi.org/10.18632/oncotarget.24867. A single arm pilot study aimed at evaluating ORR in metastatic ER-positive or TNBC patients treated with durvalumab and tremelimumab. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hammerl D, Smid M, Timmermans AM, Sleijfer S, Martens JWM, Debets R. Breast cancer genomics and immuno-oncological markers to guide immune therapies. Semin Cancer Biol. 2018;52(Pt 2):178–88.  https://doi.org/10.1016/j.semcancer.2017.11.003.CrossRefPubMedGoogle Scholar
  34. 34.
    Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol. 2017;17(1):61.  https://doi.org/10.1186/s12896-017-0379-9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Manuel M, Tredan O, Bachelot T, Clapisson G, Courtier A, Parmentier G, et al. Lymphopenia combined with low TCR diversity (divpenia) predicts poor overall survival in metastatic breast cancer patients. Oncoimmunology. 2012;1(4):432–40.  https://doi.org/10.4161/onci.19545.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Poulogiannis G, Frayling IM, Arends MJ. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome. Histopathology. 2010;56(2):167–79.  https://doi.org/10.1111/j.1365-2559.2009.03392.x.CrossRefPubMedGoogle Scholar
  37. 37.
    Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018;7(3):746–56.  https://doi.org/10.1002/cam4.1372.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nojadeh JN, Behrouz Sharif S, Sakhinia E. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159–68.  https://doi.org/10.17179/excli2017-948.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lenz HJJ, Van Cutsem E, Limon ML, Wong KY, Hendlisz A, Aglietta M, et al. Durable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC). Ann Oncol. 2018;29:714.Google Scholar
  40. 40.
    Paulson TG, Wright FA, Parker BA, Russack V, Wahl GM. Microsatellite instability correlates with reduced survival and poor disease prognosis in breast cancer. Cancer Res. 1996;56(17):4021–6.PubMedGoogle Scholar
  41. 41.
    Davies H, Morganella S, Purdie CA, Jang SJ, Borgen E, Russnes H, et al. Whole-Genome Sequencing Reveals Breast Cancers with Mismatch Repair Deficiency. Cancer Res. 2017;77(18):4755–62.  https://doi.org/10.1158/0008-5472.CAN-17-1083.CrossRefPubMedGoogle Scholar
  42. 42.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med. 2015;372(26):2509–20.  https://doi.org/10.1056/NEJMoa1500596.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    •• Kok M, Horlings HM, Snaebjornsson P, Chalabi M, Schumacher TN, Blank CU, et al. Profound Immunotherapy Response in Mismatch Repair-Deficient Breast Cancer. Jco Precis Oncol. 2017;1.  https://doi.org/10.1200/Po.17.00052. An ongoing report of a single patient with pre-treated, MSI-H metastatic TNBC who benefitted from nivolumab treatment.
  44. 44.
    •• Fremd C, Hlevnjak M, Zapatka M, Zoernig I, Halama N, Fejzibegovic N, et al. Mismatch Repair Deficiency Drives Durable Complete Remission by Targeting Programmed Death Receptor 1 in a Metastatic Luminal Breast Cancer Patient. Breast Care (Basel). 2019;14(1):53–9.  https://doi.org/10.1159/000492580. A report of rapid response and durable complete remission in a single patient with MSI-H metastatic luminal breast cancer treated with pembrolizumab monotherapy. CrossRefGoogle Scholar
  45. 45.
    Godet I, Gilkes DM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017;4(1).  https://doi.org/10.15761/ICST.1000228.
  46. 46.
    van Beers EH, van Welsem T, Wessels LF, Li Y, Oldenburg RA, Devilee P, et al. Comparative genomic hybridization profiles in human BRCA1 and BRCA2 breast tumors highlight differential sets of genomic aberrations. Cancer Res. 2005;65(3):822–7.PubMedGoogle Scholar
  47. 47.
    Nolan E, Savas P, Policheni AN, Darcy PK, Vaillant F, Mintoff CP, et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med. 2017;9(393).  https://doi.org/10.1126/scitranslmed.aal4922.CrossRefGoogle Scholar
  48. 48.
    Lakhani SR, Jacquemier J, Sloane JP, Gusterson BA, Anderson TJ, van de Vijver MJ, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst. 1998;90(15):1138–45.  https://doi.org/10.1093/jnci/90.15.1138.CrossRefPubMedGoogle Scholar
  49. 49.
    Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med. 2017;377(6):523–33.  https://doi.org/10.1056/NEJMoa1706450.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Huang J, Wang L, Cong Z, Amoozgar Z, Kiner E, Xing D, et al. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(-/-) murine model of ovarian cancer. Biochem Biophys Res Commun. 2015;463(4):551–6.  https://doi.org/10.1016/j.bbrc.2015.05.083.CrossRefPubMedGoogle Scholar
  51. 51.
    Higuchi T, Flies DB, Marjon NA, Mantia-Smaldone G, Ronner L, Gimotty PA, et al. CTLA-4 Blockade Synergizes Therapeutically with PARP Inhibition in BRCA1-Deficient Ovarian Cancer. Cancer Immunol Res. 2015;3(11):1257–68.  https://doi.org/10.1158/2326-6066.CIR-15-0044.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Reislander T, Lombardi EP, Groelly FJ, Miar A, Porru M, Di Vito S, et al. BRCA2 abrogation triggers innate immune responses potentiated by treatment with PARP inhibitors. Nat Commun. 2019;10(1):3143.  https://doi.org/10.1038/s41467-019-11048-5.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    • Emens LA, Loi S, Rugo HS, Schneeweiss A, Dieras V, Iwata H, et al., editors. IMpassion130: Efficacy in immune biomarker subgroups from the global, randomized, double-blind, placebo-controlled, phase III study of atezolizumab + nab-paclitaxel in patients with treatment-naïve, locally advanced or metastatic triple-negative breast cancer. San Antonio Breast Cancer Symposium; 2018 December 4-8, San Antonio, Texas; 2018. Further analysis of data gathered in the IMpassion130 trial exploring nab-paclitaxel/atezolizumab efficacy in biomarker-defined subgroups. Google Scholar
  54. 54.
    Zhang G, Liu C, Bai H, Cao G, Cui R, Zhang Z. Combinatorial therapy of immune checkpoint and cancer pathways provides a novel perspective on ovarian cancer treatment. Oncol Lett. 2019;17(3):2583–91.  https://doi.org/10.3892/ol.2019.9902.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Criscuolo D, Morra F, Giannella R, Visconti R, Cerrato A, Celetti A. New combinatorial strategies to improve the PARP inhibitors efficacy in the urothelial bladder Cancer treatment. J Exp Clin Cancer Res. 2019;38(1):91.  https://doi.org/10.1186/s13046-019-1089-z.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sulai NH, Tan AR. Development of poly(ADP-ribose) polymerase inhibitors in the treatment of BRCA-mutated breast cancer. Clin Adv Hematol Oncol. 2018;16(7):491–501.PubMedGoogle Scholar
  57. 57.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.  https://doi.org/10.1146/annurev-immunol-032712-100008.CrossRefPubMedGoogle Scholar
  58. 58.
    Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J, et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med. 2010;2(63):63ra94.  https://doi.org/10.1126/scitranslmed.3001375.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, et al. Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal. 2010;3(132):ra55.  https://doi.org/10.1126/scisignal.2000588.CrossRefPubMedGoogle Scholar
  60. 60.
    Antonioli L, Pacher P, Vizi ES, Hasko G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19(6):355–67.  https://doi.org/10.1016/j.molmed.2013.03.005.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Beavis PA, Stagg J, Darcy PK, Smyth MJ. CD73: a potent suppressor of antitumor immune responses. Trends Immunol. 2012;33(5):231–7.  https://doi.org/10.1016/j.it.2012.02.009.CrossRefPubMedGoogle Scholar
  62. 62.
    Wang YJ, Fletcher R, Yu J, Zhang L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis. 2018;5(3):194–203.  https://doi.org/10.1016/j.gendis.2018.05.003.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    • Lu J, Liu X, Liao YP, Wang X, Ahmed A, Jiang W, et al. Breast Cancer Chemo-immunotherapy through Liposomal Delivery of an Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway. ACS Nano. 2018;12(11):11041–61.  https://doi.org/10.1021/acsnano.8b05189. A preclinical study testing the effects of stimulating ICD with doxorubicin before treating with IDO-1-inhibitor, indoximod in mice with BC tumors. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zanetti M. Tapping CD4 T cells for cancer immunotherapy: the choice of personalized genomics. J Immunol. 2015;194(5):2049–56.  https://doi.org/10.4049/jimmunol.1402669.CrossRefPubMedGoogle Scholar
  65. 65.
    Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, et al. RAS/MAPK Activation Is Associated with Reduced Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Therapeutic Cooperation Between MEK and PD-1/PD-L1 Immune Checkpoint Inhibitors. Clin Cancer Res. 2016;22(6):1499–509.  https://doi.org/10.1158/1078-0432.CCR-15-1125.CrossRefPubMedGoogle Scholar
  66. 66.
    Johnson DB, Nixon MJ, Wang Y, Wang DY, Castellanos E, Estrada MV, et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight. 2018;3(24).  https://doi.org/10.1172/jci.insight.120360.
  67. 67.
    Johnson DB, Estrada MV, Salgado R, Sanchez V, Doxie DB, Opalenik SR, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582.  https://doi.org/10.1038/ncomms10582.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Roemer MGM, Redd RA, Cader FZ, Pak CJ, Abdelrahman S, Ouyang J, et al. Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma. J Clin Oncol. 2018;36(10):942–50.  https://doi.org/10.1200/JCO.2017.77.3994.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Rodig SJ, Gusenleitner D, Jackson DG, Gjini E, Giobbie-Hurder A, Jin C, et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med. 2018;10(450).  https://doi.org/10.1126/scitranslmed.aar3342.CrossRefGoogle Scholar
  70. 70.
    •• Wulfkuhle JD, Yau C, Wolf DM, Gallagher RI, Swigart LB, Hirst GL, et al. Quantitative MHC II protein expression levels in tumor epithelium to predict response to the PD1 inhibitor pembrolizumab in the I-SPY 2 Trial. J Clin Oncol. 2019;37(15_suppl):2631.  https://doi.org/10.1200/JCO.2019.37.15_suppl.2631. A phase 2 trial testing MHC-II as a predictive biomarker in TNBC patients treated with pembrolizumab. CrossRefGoogle Scholar
  71. 71.
    Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26(2):259–71.  https://doi.org/10.1093/annonc/mdu450.CrossRefPubMedGoogle Scholar
  72. 72.
    Adams S, Goldstein LJ, Sparano JA, Demaria S, Badve SS. Tumor infiltrating lymphocytes (TILs) improve prognosis in patients with triple negative breast cancer (TNBC). Oncoimmunology. 2015;4(9):e985930.  https://doi.org/10.4161/2162402X.2014.985930.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mao Y, Qu Q, Zhang Y, Liu J, Chen X, Shen K. The value of tumor infiltrating lymphocytes (TILs) for predicting response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. PLoS One 2014;9(12):e115103.  https://doi.org/10.1371/journal.pone.0115103.CrossRefGoogle Scholar
  74. 74.
    Siegers GM, Dutta I, Lai R, Postovit LM. Functional Plasticity of Gamma Delta T Cells and Breast Tumor Targets in Hypoxia. Front Immunol. 2018;9:1367.  https://doi.org/10.3389/fimmu.2018.01367.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ziai J, Gilbert HN, Foreman O, Eastham-Anderson J, Chu F, Huseni M, et al. CD8+ T cell infiltration in breast and colon cancer: A histologic and statistical analysis. PLoS One. 2018;13(1):e0190158.  https://doi.org/10.1371/journal.pone.0190158.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Takada K, Kashiwagi S, Goto W, Asano Y, Takahashi K, Takashima T, et al. Use of the tumor-infiltrating CD8 to FOXP3 lymphocyte ratio in predicting treatment responses to combination therapy with pertuzumab, trastuzumab, and docetaxel for advanced HER2-positive breast cancer. J Transl Med. 2018;16(1):86.  https://doi.org/10.1186/s12967-018-1460-4.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sugie T. Immunotherapy for metastatic breast cancer. Chin Clin Oncol. 2018;7(3):28.  https://doi.org/10.21037/cco.2018.05.05.CrossRefPubMedGoogle Scholar
  78. 78.
    Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32(27):2959–66.  https://doi.org/10.1200/JCO.2013.55.0491.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Santa-Maria CA, Kato T, Park JH, Flaum LE, Jain S, Tellez C, et al. Durvalumab and tremelimumab in metastatic breast cancer (MBC): Immunotherapy and immunopharmacogenomic dynamics. J Clin Oncol. 2017;35.  https://doi.org/10.1200/JCO.2017.35.15_suppl.3052.CrossRefGoogle Scholar
  80. 80.
    Kurozumi S, Yamaguchi Y, Matsumoto H, Kurosumi M, Hayashi SI, Fujii T, et al. Utility of Ki67 labeling index, cyclin D1 expression, and ER-activity level in postmenopausal ER-positive and HER2-negative breast cancer with neoadjuvant chemo-endocrine therapy. PLoS One. 2019;14(5):e0217279.  https://doi.org/10.1371/journal.pone.0217279.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Jiang X, Orr BA, Kranz DM, Shapiro DJ. Estrogen induction of the granzyme B inhibitor, proteinase inhibitor 9, protects cells against apoptosis mediated by cytotoxic T lymphocytes and natural killer cells. Endocrinology. 2006;147(3):1419–26.  https://doi.org/10.1210/en.2005-0996.CrossRefPubMedGoogle Scholar
  82. 82.
    Svoronos N, Perales-Puchalt A, Allegrezza MJ, Rutkowski MR, Payne KK, Tesone AJ, et al. Tumor Cell-Independent Estrogen Signaling Drives Disease Progression through Mobilization of Myeloid-Derived Suppressor Cells. Cancer Discov. 2017;7(1):72–85.  https://doi.org/10.1158/2159-8290.CD-16-0502.CrossRefPubMedGoogle Scholar
  83. 83.
    Rothenberger NJ, Somasundaram A, Stabile LP. The Role of the Estrogen Pathway in the Tumor Microenvironment. Int J Mol Sci. 2018;19(2).  https://doi.org/10.3390/ijms19020611.CrossRefGoogle Scholar
  84. 84.
    Kozasa K, Mabuchi S, Matsumoto Y, Kuroda H, Yokoi E, Komura N, et al. Estrogen stimulates female cancer progression by inducing myeloid-derived suppressive cells: investigations on pregnant and non-pregnant experimental models. Oncotarget. 2019;10(20):1887–902.  https://doi.org/10.18632/oncotarget.26711.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Polanczyk MJ, Hopke C, Vandenbark AA, Offner H. Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int Immunol. 2007;19(3):337–43.  https://doi.org/10.1093/intimm/dxl151.CrossRefPubMedGoogle Scholar
  86. 86.
    Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA, Ziegler SF, et al. Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J Immunol. 2004;173(4):2227–30.  https://doi.org/10.4049/jimmunol.173.4.2227.CrossRefPubMedGoogle Scholar
  87. 87.
    Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, et al. Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2018;4(3):351–7.  https://doi.org/10.1001/jamaoncol.2017.4771.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, et al. Baseline Biomarkers for Outcome of Melanoma Patients Treated with Pembrolizumab. Clin Cancer Res. 2016;22(22):5487–96.  https://doi.org/10.1158/1078-0432.CCR-16-0127.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E, et al. PD-1 Blockade Expands Intratumoral Memory T Cells. Cancer Immunol Res. 2016;4(3):194–203.  https://doi.org/10.1158/2326-6066.CIR-15-0210.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Jurisic V, Radenkovic S, Konjevic G. The Actual Role of LDH as Tumor Marker, Biochemical and Clinical Aspects. Adv Exp Med Biol. 2015;867:115–24.  https://doi.org/10.1007/978-94-017-7215-0_8.CrossRefPubMedGoogle Scholar
  91. 91.
    Alegre E, Sammamed M, Fernandez-Landazuri S, Zubiri L, Gonzalez A. Circulating biomarkers in malignant melanoma. Adv Clin Chem. 2015;69:47–89.  https://doi.org/10.1016/bs.acc.2014.12.002.CrossRefPubMedGoogle Scholar
  92. 92.
    Petrelli F, Cabiddu M, Coinu A, Borgonovo K, Ghilardi M, Lonati V, et al. Prognostic role of lactate dehydrogenase in solid tumors: a systematic review and meta-analysis of 76 studies. Acta Oncol. 2015;54(7):961–70.  https://doi.org/10.3109/0284186X.2015.1043026.CrossRefPubMedGoogle Scholar
  93. 93.
    Angelin A, Gil-de-Gomez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metab. 2017;25(6):1282–93 e7.  https://doi.org/10.1016/j.cmet.2016.12.018.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Voorwerk L, Kat M, Kok M. Towards predictive biomarkers for immunotherapy response in breast cancer patients. Breast Cancer Manag. 2018;7(1).  https://doi.org/10.2217/bmt-2017-0014.CrossRefGoogle Scholar
  95. 95.
    • Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study. J Clin Oncol. 2016;34(21):2460–7.  https://doi.org/10.1200/JCO.2015.64.8931. A non-randomized phase Ib study of testing safety and clinical activity of pembrolizumab monotherapy in patients with heavily pretreated, advanced TNBC. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    • Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, et al. Phase 2 study of pembrolizumab (pembro) monotherapy for previously treated metastatic triple-negative breast cancer (mTNBC): KEYNOTE-086 cohort A. J Clin Oncol. 2017;35.  https://doi.org/10.1200/JCO.2017.35.15_suppl.1008. A phase 2 trial testing pembrolizumab safety and responses in metastatic TNBC patients who had previously received chemotherapy. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MedicineVanderbilt University Medical CenterNashvilleUSA
  2. 2.Cancer Biology ProgramVanderbilt University Medical CenterNashvilleUSA
  3. 3.Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleUSA
  4. 4.Breast Cancer Research ProgramVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations