Advertisement

Current Breast Cancer Reports

, Volume 9, Issue 3, pp 173–182 | Cite as

Incidence, Diagnosis, and Treatment of Cardiac Toxicity From Trastuzumab in Patients With Breast Cancer

  • Somaira Nowsheen
  • Paul V Viscuse
  • Ciara C. O’Sullivan
  • Nicole P. Sandhu
  • Tufia C. Haddad
  • Anne Blaes
  • Jennifer Klemp
  • Lara Nhola
  • Joerg Herrmann
  • Kathryn J. Ruddy
Clinical Trials (PF Peddi, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Clinical Trials

Abstract

Purpose of Review

Treatment with trastuzumab is a cornerstone of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer treatment, but carries an unfortunate risk of toxicity to the cardiovascular system. Here, we review recent findings on trastuzumab-associated cardiotoxicity, focusing on its incidence, diagnosis, and treatment.

Recent Findings

Screening with multigated acquisition scan (MUGA) or echocardiogram (ECHO) is recommended to assess cardiac function prior to and during trastuzumab therapy. Because trastuzumab-induced cardiotoxicity is typically reversible, cessation of trastuzumab and/or administration of first-line heart failure agents effectively restores cardiac function in most cases. Severe trastuzumab-induced cardiotoxicity is rare enough that the risk-benefit ratio still weighs in favor of its use in the vast majority of patients with HER2+ breast cancer.

Summary

An improved understanding of the pathophysiology underlying trastuzumab-induced cardiotoxicity and the identification of patients at highest risk will allow us to continue to safely administer trastuzumab in patients with breast cancer.

Keywords

Breast cancer Trastuzumab Cardiotoxicity Cardiomyopathy HER2 Cardio-oncology 

Notes

Compliance With Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Source of Funding

K.J.R. was supported by a training grant under the CTSA Grant Program Numbers UL1 TR000135 and KL2TR000136-09 from the National Center for Advancing Translational Sciences (NCATS) of the NIH. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

References

  1. 1.
    American Cancer Society. Cancer treatment & survivorship facts & figures. 2017. [Internet]. 2017 [cited June 7, 2017]. Available from: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures.html
  2. 2.
    Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010;10:337.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.CrossRefPubMedGoogle Scholar
  4. 4.
    American Cancer Society. Breast cancer facts & figures 2015–2016 [Internet]. [cited June 3, 2017]. Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2015-2016.pdf.
  5. 5.
    Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87.CrossRefPubMedGoogle Scholar
  6. 6.
    Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.CrossRefPubMedGoogle Scholar
  8. 8.
    Baselga J, Carbonell X, Castañeda-Soto N-J, Clemens M, Green M, Harvey V, et al. Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol. 2005;23(10):2162–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2–positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol. 2005;23(19):4265–74.CrossRefPubMedGoogle Scholar
  10. 10.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.CrossRefPubMedGoogle Scholar
  12. 12.
    National Comprehensive Cancer Network. Breast Cancer Version 2.2017. 2017. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed 6 Apr 2017
  13. 13.
    Tocchetti CG, Ragone G, Coppola C, Rea D, Piscopo G, Scala S, et al. Detection, monitoring, and management of trastuzumab-induced left ventricular dysfunction: an actual challenge. Eur J Heart Fail. 2012;14(2):130–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Odiete O, Hill MF, Sawyer DB. Neuregulin in cardiovascular development and disease. Circ Res. 2012;111(10):1376–85.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zeglinski M, Ludke A, Jassal DS, Singal PK. Trastuzumab-induced cardiac dysfunction: a ‘dual-hit’. Exp Clin Cardiol. 2011;16(3):70–4.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Crone SA, Zhao Y-Y, Fan L, Gu Y, Minamisawa S, Liu Y, et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med. 2002;8(5):459–65.CrossRefPubMedGoogle Scholar
  17. 17.
    ElZarrad MK, Mukhopadhyay P, Mohan N, Hao E, Dokmanovic M, Hirsch DS, et al. Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PLoS One. 2013;8(11):e79543.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zuppinger C, Timolati F, Suter TM. Pathophysiology and diagnosis of cancer drug induced cardiomyopathy. Cardiovasc Toxicol. 2007;7(2):61–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Guglin M, Cutro R, Mishkin JD. Trastuzumab-induced cardiomyopathy. J Card Fail. 2008;14(5):437–44.CrossRefPubMedGoogle Scholar
  20. 20.
    Ponde NF, Lambertini M, de Azambuja E. Twenty years of anti-HER2 therapy-associated cardiotoxicity. ESMO Open. 2016;1(4):e000073.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.CrossRefPubMedGoogle Scholar
  22. 22.
    Perez EA, Suman VJ, Davidson NE, Sledge GW, Kaufman PA, Hudis CA, et al. Cardiac safety analysis of doxorubicin and cyclophosphamide followed by paclitaxel with or without trastuzumab in the north central cancer treatment group N9831 adjuvant breast cancer trial. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(8):1231–8.CrossRefGoogle Scholar
  23. 23.
    Tan-Chiu E, Yothers G, Romond E, Geyer CE Jr, Ewer M, Keefe D, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2–overexpressing breast cancer: NSABP B-31. J Clin Oncol. 2005;23(31):7811–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Russo G, Cioffi G, Di Lenarda A, Tuccia F, Bovelli D, Di Tano G, et al. Role of renal function on the development of cardiotoxicity associated with trastuzumab-based adjuvant chemotherapy for early breast cancer. Intern Emerg Med. 2012;7(5):439–46.CrossRefPubMedGoogle Scholar
  25. 25.
    Guenancia C, Lefebvre A, Cardinale D, Yu AF, Ladoire S, Ghiringhelli F, et al. Obesity as a risk factor for anthracyclines and trastuzumab cardiotoxicity in breast cancer: a systematic review and meta-analysis. J Clin Oncol. 2016;34(26):3157–65.CrossRefPubMedGoogle Scholar
  26. 26.
    Gunaldi M, Duman BB, Afsar CU, Paydas S, Erkisi M, Kara IO, et al. Risk factors for developing cardiotoxicity of trastuzumab in breast cancer patients: an observational single-centre study. J Oncol Pharm Pract. 2016;22(2):242–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Valicsek E, Kószó R, Dobi Á, Uhercsák G, Varga Z, Vass A, et al. Cardiac surveillance findings during adjuvant and palliative trastuzumab therapy in patients with breast cancer. Anticancer Res. 2015;35(9):4967–73.PubMedGoogle Scholar
  28. 28.
    Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.CrossRefPubMedGoogle Scholar
  29. 29.
    Farolfi A, Melegari E, Aquilina M, Scarpi E, Ibrahim T, Maltoni R, et al. Trastuzumab-induced cardiotoxicity in early breast cancer patients: a retrospective study of possible risk and protective factors. Heart. 2013;99(9):634–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Cochet A, Quilichini G, Dygai-Cochet I, Touzery C, Toubeau M, Berriolo-Riedinger A, et al. Baseline diastolic dysfunction as a predictive factor of trastuzumab-mediated cardiotoxicity after adjuvant anthracycline therapy in breast cancer. Breast Cancer Res Treat. 2011;130(3):845–54.CrossRefPubMedGoogle Scholar
  31. 31.
    Keefe DL. Trastuzumab-associated cardiotoxicity. Cancer. 2002;95(7):1592–600.CrossRefPubMedGoogle Scholar
  32. 32.
    Cao L, Cai G, Chang C, Yang Z-Z, Feng Y, Yu X-L, et al. Early cardiac toxicity following adjuvant radiotherapy of left-sided breast cancer with or without concurrent trastuzumab. Oncotarget. 2016;7(1):1042–54.CrossRefPubMedGoogle Scholar
  33. 33.
    Dang C, Guo H, Najita J, Yardley D, Marcom K, Albain K, et al. Cardiac outcomes of patients receiving adjuvant weekly paclitaxel and trastuzumab for node-negative, ERBB2-positive breast cancer. JAMA Oncol. 2016;2(1):29–36.CrossRefPubMedGoogle Scholar
  34. 34.
    Romond EH, Jeong JH, Rastogi P, Swain SM, Geyer CE Jr, Ewer MS, et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol. 2012;30(31):3792–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Advani PP, Ballman KV, Dockter TJ, Colon-Otero G, Perez EA. Long-term cardiac safety analysis of NCCTG N9831 (alliance) adjuvant trastuzumab trial. J Clin Oncol. 2016;34(6):581–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Cameron D, Piccart-Gebhart MJ, Gelber RD, Procter M, Goldhirsch A, de Azambuja E, et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin adjuvant (HERA) trial. Lancet. 2017;389(10075):1195–205.CrossRefPubMedGoogle Scholar
  37. 37.
    Slamon DJ EW, Robert NJ, Giermek J, Martin M, Jasiowka M, Mackey JR, Chan A, Liu M-C, Pinter T, Valero V, Falkson C, Fornander T, Shiftan TA, Bensfia S, Hitier S, Xu N, Bée-Munteanu V, Drevot P, Press MF, Crown J, On Behalf of the BCIRG-006 Investigators, editors. Ten year follow-up of BCIRG-006 comparing doxorubicin plus cyclophosphamide followed by docetaxel (AC→T) with doxorubicin plus cyclophosphamide followed by docetaxel and trastuzumab (AC→TH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2+ early breast cancer. San Antonio Breast Cancer Symposium Abstract S5-04 Presented December 11, 2015. 2015.Google Scholar
  38. 38.
    de Azambuja E, Procter MJ, van Veldhuisen DJ, Agbor-Tarh D, Metzger-Filho O, Steinseifer J, et al. Trastuzumab-associated cardiac events at 8 years of median follow-up in the Herceptin Adjuvant trial (BIG 1-01). J Clin Oncol. 2014;32(20):2159–65.CrossRefPubMedGoogle Scholar
  39. 39.
    Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Long HD, Lin YE, Zhang JJ, Zhong WZ, Zheng RN. Risk of congestive heart failure in early breast cancer patients undergoing adjuvant treatment with trastuzumab: a meta-analysis. Oncologist. 2016;21(5):547–54.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gasparini G, Gion M, Mariani L, Papaldo P, Crivellari D, Filippelli G, et al. Randomized phase II trial of weekly paclitaxel alone versus trastuzumab plus weekly paclitaxel as first-line therapy of patients with Her-2 positive advanced breast cancer. Breast Cancer Res Treat. 2007;101(3):355–65.CrossRefPubMedGoogle Scholar
  42. 42.
    Kaufman B, Mackey JR, Clemens MR, Bapsy PP, Vaid A, Wardley A, et al. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol. 2009;27(33):5529–37.CrossRefPubMedGoogle Scholar
  43. 43.
    von Minckwitz G, Schwedler K, Schmidt M, Barinoff J, Mundhenke C, Cufer T, et al. Trastuzumab beyond progression: overall survival analysis of the GBG 26/BIG 3-05 phase III study in HER2-positive breast cancer. Eur J Cancer. 2011;47(15):2273–81.CrossRefGoogle Scholar
  44. 44.
    Swain SM, Baselga J, Kim S-B, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–34.CrossRefPubMedGoogle Scholar
  45. 45.
    Gianni L, Pienkowski T, Im Y-H, Tseng L-M, Liu M-C, Lluch A, et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial. Lancet Oncol. 2016;17(6):791–800.CrossRefPubMedGoogle Scholar
  46. 46.
    Tolaney SM, Barry WT, Dang CT, Yardley DA, Moy B, Marcom PK, et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer. N Engl J Med. 2015;372(2):134–41.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jones SE, Collea R, Paul D, Sedlacek S, Favret AM, Gore I, et al. Adjuvant docetaxel and cyclophosphamide plus trastuzumab in patients with HER2-amplified early stage breast cancer: a single-group, open-label, phase 2 study. Lancet Oncol. 2013;14(11):1121–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Swain SM, Ewer MS, Cortés J, Amadori D, Miles D, Knott A, et al. Cardiac tolerability of pertuzumab plus trastuzumab plus docetaxel in patients with HER2-positive metastatic breast cancer in CLEOPATRA: a randomized, double-blind, placebo-controlled phase III study. Oncologist. 2013;18(3):257–64.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Seidman AD, Fornier MN, Esteva FJ, Tan L, Kaptain S, Bach A, et al. Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol. 2001;19(10):2587–95.CrossRefPubMedGoogle Scholar
  50. 50.
    Dang C, Iyengar N, Datko F, D'Andrea G, Theodoulou M, Dickler M, et al. Phase II study of paclitaxel given once per week along with trastuzumab and pertuzumab in patients with human epidermal growth factor receptor 2–positive metastatic breast cancer. J Clin Oncol. 2014;33(5):442–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Advani PP, Ballman KV, Dockter TJ, Colon-Otero G, Perez EA. Long-term cardiac safety analysis of NCCTG N9831 (Alliance) adjuvant trastuzumab trial. J Clin Oncol. 2015;34(6):581–7.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mantarro S, Rossi M, Bonifazi M, D’Amico R, Blandizzi C, La Vecchia C, et al. Risk of severe cardiotoxicity following treatment with trastuzumab: a meta-analysis of randomized and cohort studies of 29,000 women with breast cancer. Intern Emerg Med. 2016;11(1):123–40.CrossRefPubMedGoogle Scholar
  53. 53.
    Bowles EJA, Wellman R, Feigelson HS, Onitilo AA, Freedman AN, Delate T, et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst. 2012;104(17):1293–305.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chavez-MacGregor M, Zhang N, Buchholz TA, Zhang Y, Niu J, Elting L, et al. Trastuzumab-related cardiotoxicity among older patients with breast cancer. J Clin Oncol. 2013;31(33):4222–8.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60(24):2504–12.CrossRefPubMedGoogle Scholar
  56. 56.
    Genentech: Herceptin (trastuzumab): highlights of prescribing information. http://www.gene.com/download/pdf/herceptin_prescribing.pdf. 4/2015 update.
  57. 57.
    Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines †. Ann Oncol. 2012;23(suppl_7):vii155–vii66.PubMedGoogle Scholar
  58. 58.
    Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2017;35(8):893–911.CrossRefPubMedGoogle Scholar
  59. 59.
    Brann AM, Cobleigh MA, Okwuosa TM. Cardiovascular monitoring with trastuzumab therapy: how frequent is too frequent? JAMA Oncol. 2016;2(9):1123–4.CrossRefPubMedGoogle Scholar
  60. 60.
    Davis CC, Zelnak A, Eley JW, Goldstein DA, Switchenko JM, McKibbin T. Clinical utility of routine cardiac monitoring in breast cancer patients receiving trastuzumab. Ann Pharmacother. 2016;1060028016654160.Google Scholar
  61. 61.
    Dang CT, Yu AF, Jones LW, Liu J, Steingart RM, Argolo DF, et al. Cardiac surveillance guidelines for trastuzumab-containing therapy in early-stage breast cancer: getting to the heart of the matter. J Clin Oncol. 2016;34(10):1030–3.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr. 2013;26(5):493–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes. J Am Coll Cardiol. 2013;61(1):77–84.CrossRefPubMedGoogle Scholar
  64. 64.
    Nakano S, Takahashi M, Kimura F, Senoo T, Saeki T, Ueda S, et al. Cardiac magnetic resonance imaging-based myocardial strain study for evaluation of cardiotoxicity in breast cancer patients treated with trastuzumab: a pilot study to evaluate the feasibility of the method. Cardiol J. 2016;23(3):270–80.CrossRefPubMedGoogle Scholar
  65. 65.
    Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014;27(9):911–39.CrossRefPubMedGoogle Scholar
  66. 66.
    Negishi T, Negishi K, Nolan M, Fukuda N, Yamada H, Lemieux J, et al. Persistence of higher concordance of strain over ejection fraction for evaluation of left ventricular function: results from the Succour Trial. J Am Soc Echocardiogr. 2016;29(6):B66.Google Scholar
  67. 67.
    Witteles RM. Biomarkers as predictors of cardiac toxicity from targeted cancer therapies. J Card Fail. 2016;22(6):459–64.CrossRefPubMedGoogle Scholar
  68. 68.
    Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II–positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57(22):2263–70.CrossRefPubMedGoogle Scholar
  69. 69.
    2017. https://clinicaltrials.gov/. Accessed 2 June 2017.
  70. 70.
    Chavez-MacGregor M, Niu J, Zhang N, Elting LS, Smith BD, Banchs J, et al. Cardiac monitoring during adjuvant trastuzumab-based chemotherapy among older patients with breast cancer. J Clin Oncol. 2015;33(19):2176–83.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Schneeweiss A, Chia S, Hickish T, Harvey V, Eniu A, Hegg R, et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol. 2013;24(9):2278–84.CrossRefPubMedGoogle Scholar
  72. 72.
    Giordano SH, Lin Y-L, Kuo YF, Hortobagyi GN, Goodwin JS. Decline in the use of anthracyclines for breast cancer. J Clin Oncol. 2012;30(18):2232–9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Seicean S, Seicean A, Alan N, Plana JC, Budd GT, Marwick TH. Cardioprotective effect of beta-adrenoceptor blockade in breast cancer patients undergoing chemotherapy: a follow-up study of heart failure. Circulation: Heart Failure. 2013:CIRCHEARTFAILURE. 112.000055.Google Scholar
  74. 74.
    Russell SD, Blackwell KL, Lawrence J, Pippen JE Jr, Roe MT, Wood F, et al. Independent adjudication of symptomatic heart failure with the use of doxorubicin and cyclophosphamide followed by trastuzumab adjuvant therapy: a combined review of cardiac data from the National Surgical Adjuvant breast and Bowel Project B-31 and the North Central Cancer Treatment Group N9831 clinical trials. J Clin Oncol. 2010;28(21):3416–21.CrossRefPubMedGoogle Scholar
  75. 75.
    Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101–Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. Journal of Clinical Oncology. 2016:JCO. 2016.68. 7830.Google Scholar
  76. 76.
    Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2× 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Boekhout AH, Gietema JA, Kerklaan BM, van Werkhoven ED, Altena R, Honkoop A, et al. Angiotensin II–receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer: a randomized clinical trial. JAMA Oncol. 2016;2(8):1030–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Mukku RB, Fonarow GC, Watson KE, Ajijola OA, Depasquale EC, Nsair A, et al. Heart failure therapies for end-stage chemotherapy–induced cardiomyopathy. J Card Fail. 2016;22(6):439–48.CrossRefPubMedGoogle Scholar
  79. 79.
    Guglin M, Munster P, Fink A, Krischer J. Lisinopril or Coreg CR in reducing cardiotoxicity in women with breast cancer receiving trastuzumab: a rationale and design of a randomized clinical trial. Am Heart J. 2017;188:87–92.CrossRefPubMedGoogle Scholar
  80. 80.
    Meattini I, Curigliano G, Terziani F, Becherini C, Airoldi M, Allegrini G, et al. SAFE trial: an ongoing randomized clinical study to assess the role of cardiotoxicity prevention in breast cancer patients treated with anthracyclines with or without trastuzumab. Med Oncol. 2017;34(5):75.CrossRefPubMedGoogle Scholar
  81. 81.
    Collaborative E. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ. 2004;328(7433):189.CrossRefGoogle Scholar
  82. 82.
    Martínez-González MÁ, De la Fuente-Arrillaga C, Nuñez-Cordoba JM, Basterra-Gortari FJ, Beunza JJ, Vazquez Z, et al. Adherence to Mediterranean diet and risk of developing diabetes: prospective cohort study. BMJ. 2008;336(7657):1348–51.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Rumawas ME, Meigs JB, Dwyer JT, McKeown NM, Jacques PF. Mediterranean-style dietary pattern, reduced risk of metabolic syndrome traits, and incidence in the Framingham Offspring Cohort. Am J Clin Nutr. 2009;90(6):1608–14.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Liyanage T, Ninomiya T, Wang A, Neal B, Jun M, Wong MG, et al. Effects of the Mediterranean diet on cardiovascular outcomes—a systematic review and meta-analysis. PLoS One. 2016;11(8):e0159252.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure. Circulation. 2013:CIR. 0b013e31829e8776.Google Scholar
  86. 86.
    Cueva J, Antolín S, Calvo L, Fernández I, Ramos M, de Paz L, et al. Galician consensus on management of cardiotoxicity in breast cancer: risk factors, prevention, and early intervention. Clin Transl Oncol. 2017:1–12.Google Scholar
  87. 87.
    Bianco CM, Al-Kindi SG, Oliveira GH. Advanced heart failure therapies for cancer therapeutics–related cardiac dysfunction. Heart Fail Clin. 2017;13(2):327–36.CrossRefPubMedGoogle Scholar
  88. 88.
    Yu AF, Yadav NU, Eaton AA, Lung BY, Thaler HT, Liu JE, et al. Continuous trastuzumab therapy in breast cancer patients with asymptomatic left ventricular dysfunction. Oncologist. 2015;20(10):1105–10.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lynce F, Barac A, Tan MT, Asch FM, Smith KL, Dang C, et al. SAFE-HEaRt: rationale and design of a pilot study investigating cardiac safety of HER2 targeted therapy in patients with HER2-positive breast cancer and reduced left ventricular function. Oncologist. 2017;22(5):518–25.CrossRefPubMedGoogle Scholar
  90. 90.
    Ammon M, Arenja N, Leibundgut G, Buechel RR, Kuster GM, Kaufmann BA, et al. Cardiovascular management of cancer patients with chemotherapy-associated left ventricular systolic dysfunction in real-world clinical practice. J Card Fail. 2013;19(9):629–34.CrossRefPubMedGoogle Scholar
  91. 91.
    Jovenaux L, Cautela J, Resseguier N, Pibarot M, Taouqi M, Orabona M, et al. Practices in management of cancer treatment-related cardiovascular toxicity: a cardio-oncology survey. Int J Cardiol. 2017.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Somaira Nowsheen
    • 1
  • Paul V Viscuse
    • 2
  • Ciara C. O’Sullivan
    • 3
  • Nicole P. Sandhu
    • 4
  • Tufia C. Haddad
    • 3
  • Anne Blaes
    • 5
  • Jennifer Klemp
    • 6
  • Lara Nhola
    • 7
  • Joerg Herrmann
    • 8
  • Kathryn J. Ruddy
    • 3
  1. 1.Mayo Clinic Graduate School of Biomedical SciencesMayo Clinic School of Medicine and the Mayo Clinic Medical Scientist Training ProgramRochesterUSA
  2. 2.Department of MedicineMayo ClinicRochesterUSA
  3. 3.Division of Medical OncologyMayo ClinicRochesterUSA
  4. 4.Division of General Internal MedicineMayo ClinicRochesterUSA
  5. 5.Department of MedicineUniversity of MinnesotaRochesterUSA
  6. 6.Division of Clinical OncologyUniversity of Kansas Medical CenterWichitaUSA
  7. 7.Division of Cardiology ResearchMayo ClinicRochesterUSA
  8. 8.Department of Cardiovascular DiseasesMayo ClinicRochesterUSA

Personalised recommendations